Well-posedness of the classical solutions for a Kawahara–Korteweg–de Vries-type equation

Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo
2021 ◽  
pp. 1-23
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau–Korteweg-deVries–Kawahara equation describes the dynamics of dense discrete systems or small-amplitude gravity capillary waves on water of a finite depth. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 77 ◽  
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Kuramoto–Sinelshchikov–Velarde equation describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking into account the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.


1994 ◽  
Vol 04 (01) ◽  
pp. 49-88 ◽  
Author(s):  
CHRISTINE BERNARDI ◽  
MARIE-CLAUDE PELISSIER

This paper deals with a linear Schrödinger type equation in a rectangular domain with mixed Dirichlet-Neumann boundary conditions. The well-posedness of the continuous problem is proved, then a discrete problem is defined by combining a Legendre type spectral method in the first direction and a leap-frog scheme in the other one. The numerical analysis of the discretization is performed and error estimates are given. Numerical tests are presented.


2020 ◽  
Vol 61 (7) ◽  
pp. 071502
Author(s):  
Zaiyun Zhang ◽  
Zhenhai Liu ◽  
Youjun Deng ◽  
Chuangxia Huang ◽  
Shiyou Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document