scholarly journals Étale cohomology of rank one $$\ell $$-adic local systems in positive characteristic

2021 ◽  
Vol 27 (4) ◽  
Author(s):  
Hélène Esnault ◽  
Moritz Kerz

AbstractWe show that in positive characteristic special loci of deformation spaces of rank one $$\ell $$ ℓ -adic local systems are quasi-linear. From this we deduce the Hard Lefschetz theorem for rank one $$\ell $$ ℓ -adic local systems and a generic vanishing theorem.


2019 ◽  
Vol 2019 (749) ◽  
pp. 295-304 ◽  
Author(s):  
Isabel Leal

Abstract Let K be a complete discrete valuation field whose residue field is perfect and of positive characteristic, let X be a connected, proper scheme over \mathcal{O}_{K} , and let U be the complement in X of a divisor with simple normal crossings. Assume that the pair (X,U) is strictly semi-stable over \mathcal{O}_{K} of relative dimension one and K is of equal characteristic. We prove that, for any smooth \ell -adic sheaf \mathcal{G} on U of rank one, at most tamely ramified on the generic fiber, if the ramification of \mathcal{G} is bounded by t+ for the logarithmic upper ramification groups of Abbes–Saito at points of codimension one of X, then the ramification of the étale cohomology groups with compact support of \mathcal{G} is bounded by t+ in the same sense.



Author(s):  
Yongqiang Liu ◽  
Laurentiu Maxim ◽  
Botong Wang

Abstract We use the non-proper Morse theory of Palais–Smale to investigate the topology of smooth closed subvarieties of complex semi-abelian varieties and that of their infinite cyclic covers. As main applications, we obtain the finite generation (except in the middle degree) of the corresponding integral Alexander modules as well as the signed Euler characteristic property and generic vanishing for rank-one local systems on such subvarieties. Furthermore, we give a more conceptual (topological) interpretation of the signed Euler characteristic property in terms of vanishing of Novikov homology. As a byproduct, we prove a generic vanishing result for the $L^2$-Betti numbers of very affine manifolds. Our methods also recast June Huh’s extension of Varchenko’s conjecture to very affine manifolds and provide a generalization of this result in the context of smooth closed sub-varieties of semi-abelian varieties.



2013 ◽  
Vol 1 ◽  
Author(s):  
MIHNEA POPA ◽  
CHRISTIAN SCHNELL

AbstractWe extend most of the results of generic vanishing theory to bundles of holomorphic forms and rank-one local systems, and more generally to certain coherent sheaves of Hodge-theoretic origin associated with irregular varieties. Our main tools are Saito’s mixed Hodge modules, the Fourier–Mukai transform for $\mathscr{D}$-modules on abelian varieties introduced by Laumon and Rothstein, and Simpson’s harmonic theory for flat bundles. In the process, we also discover two natural categories of perverse coherent sheaves.





2019 ◽  
Vol 156 (2) ◽  
pp. 299-324
Author(s):  
David Hansen

We prove a rigid analytic analogue of the Artin–Grothendieck vanishing theorem. Precisely, we prove (under mild hypotheses) that the geometric étale cohomology of any Zariski-constructible sheaf on any affinoid rigid space $X$ vanishes in all degrees above the dimension of $X$. Along the way, we show that branched covers of normal rigid spaces can often be extended across closed analytic subsets, in analogy with a classical result for complex analytic spaces. We also prove some new comparison theorems relating the étale cohomology of schemes and rigid analytic varieties, and give some applications of them. In particular, we prove a structure theorem for Zariski-constructible sheaves on characteristic-zero affinoid spaces.



2014 ◽  
Vol 18 (2) ◽  
pp. 1149-1244 ◽  
Author(s):  
Benjamin Antieau ◽  
David Gepner


1983 ◽  
pp. 13-26 ◽  
Author(s):  
S. Bloch


Author(s):  
Jean Fresnel ◽  
Marius van der Put




Sign in / Sign up

Export Citation Format

Share Document