Global bifurcation for problem with mean curvature operator on general domain

Author(s):  
Guowei Dai
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Wenguo Shen

In this paper, we establish a unilateral global bifurcation result for half-linear perturbation problems with mean curvature operator in Minkowski space. As applications of the abovementioned result, we shall prove the existence of nodal solutions for the following problem −div∇v/1−∇v2=αxv++βxv−+λaxfv, in BR0,vx=0, on ∂BR0, where λ ≠ 0 is a parameter, R is a positive constant, and BR0=x∈ℝN:x<R is the standard open ball in the Euclidean space ℝNN≥1 which is centered at the origin and has radius R. a(|x|) ∈ C[0, R] is positive, v+ = max{v, 0}, v− = −min{v, 0}, α(|x|), β(|x|) ∈ C[0, R]; f∈Cℝ,ℝ, s f (s) > 0 for s ≠ 0, and f0 ∈ [0, ∞], where f0 = lim|s|⟶0 f(s)/s. We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.


2019 ◽  
Vol 17 (1) ◽  
pp. 1055-1064 ◽  
Author(s):  
Jiaoxiu Ling ◽  
Zhan Zhou

Abstract In this paper, by using critical point theory, we obtain some sufficient conditions on the existence of infinitely many positive solutions of the discrete Dirichlet problem involving the mean curvature operator. We show that the suitable oscillating behavior of the nonlinear term near at the origin and at infinity will lead to the existence of a sequence of pairwise distinct nontrivial positive solutions. We also give two examples to illustrate our main results.


2017 ◽  
Vol 17 (4) ◽  
pp. 769-780 ◽  
Author(s):  
Daniela Gurban ◽  
Petru Jebelean ◽  
Călin Şerban

AbstractIn this paper, we use the critical point theory for convex, lower semicontinuous perturbations of{C^{1}}-functionals to obtain the existence of multiple nontrivial solutions for one parameter potential systems involving the operator{u\mapsto\operatorname{div}(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}})}. The solvability of a general non-potential system is also established.


Sign in / Sign up

Export Citation Format

Share Document