scholarly journals Resolvent Estimates for the Lamé Operator and Failure of Carleman Estimates

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Yehyun Kwon ◽  
Sanghyuk Lee ◽  
Ihyeok Seo
2020 ◽  
Vol 28 (6) ◽  
pp. 797-814
Author(s):  
Elena-Alexandra Melnig

AbstractWe consider systems of parabolic equations coupled in zero and first order terms. We establish Lipschitz estimates in {L^{q}}-norms, {2\leq q\leq\infty}, for the source in terms of the solution in a subdomain. The main tool is a family of appropriate Carleman estimates with general weights, in Lebesgue spaces, for nonhomogeneous parabolic systems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammed Alaoui ◽  
Abdelkarim Hajjaj ◽  
Lahcen Maniar ◽  
Jawad Salhi

AbstractIn this paper, we study an inverse source problem for a degenerate and singular parabolic system where the boundary conditions are of Neumann type. We consider a problem with degenerate diffusion coefficients and singular lower-order terms, both vanishing at an interior point of the space domain. In particular, we address the question of well-posedness of the problem, and then we prove a stability estimate of Lipschitz type in determining the source term by data of only one component. Our method is based on Carleman estimates, cut-off procedures and a reflection technique.


Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.


2013 ◽  
Vol 38 (5) ◽  
pp. 823-859 ◽  
Author(s):  
Lucie Baudouin ◽  
Maya de Buhan ◽  
Sylvain Ervedoza
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document