scholarly journals Eigenvalue bounds for non-selfadjoint Dirac operators

Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.

Author(s):  
Arezo Tarviji ◽  
Morteza Mirmohammad Rezaei

We compare the Dirac operator on transitive Riemannian Lie algebroid equipped by spin or complex spin structure with the one defined on to its base manifold‎. Consequently we derive upper eigenvalue bounds of Dirac operator on base manifold of spin Lie algebroid twisted with the spinor bundle of kernel bundle‎.


Author(s):  
Moulay-Tahar Benameur ◽  
Alan L. Carey

AbstractFor a single Dirac operator on a closed manifold the cocycle introduced by Jaffe-Lesniewski-Osterwalder [19] (abbreviated here to JLO), is a representative of Connes' Chern character map from the K-theory of the algebra of smooth functions on the manifold to its entire cyclic cohomology. Given a smooth fibration of closed manifolds and a family of generalized Dirac operators along the fibers, we define in this paper an associated bivariant JLO cocycle. We then prove that, for any l ≥ 0, our bivariant JLO cocycle is entire when we endow smoooth functions on the total manifold with the Cl+1 topology and functions on the base manifold with the Cl topology. As a by-product of our theorem, we deduce that the bivariant JLO cocycle is entire for the Fréchet smooth topologies. We then prove that our JLO bivariant cocycle computes the Chern character of the Dai-Zhang higher spectral flow.


2002 ◽  
Vol 13 (05) ◽  
pp. 533-548 ◽  
Author(s):  
NICOLAS GINOUX ◽  
BERTRAND MOREL

We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.


2019 ◽  
Vol 150 (6) ◽  
pp. 2871-2893 ◽  
Author(s):  
Sergei A. Nazarov ◽  
Nicolas Popoff ◽  
Jari Taskinen

We consider the Robin Laplacian in the domains Ω and Ωε, ε > 0, with sharp and blunted cusps, respectively. Assuming that the Robin coefficient a is large enough, the spectrum of the problem in Ω is known to be residual and to cover the whole complex plane, but on the contrary, the spectrum in the Lipschitz domain Ωε is discrete. However, our results reveal the strange behaviour of the discrete spectrum as the blunting parameter ε tends to 0: we construct asymptotic forms of the eigenvalues and detect families of ‘hardly movable’ and ‘plummeting’ ones. The first type of the eigenvalues do not leave a small neighbourhood of a point for any small ε > 0 while the second ones move at a high rate O(| ln ε|) downwards along the real axis ℝ to −∞. At the same time, any point λ ∈ ℝ is a ‘blinking eigenvalue’, i.e., it belongs to the spectrum of the problem in Ωε almost periodically in the | ln ε|-scale. Besides standard spectral theory, we use the techniques of dimension reduction and self-adjoint extensions to obtain these results.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Asao Arai

Spectral properties of a special class of infinite dimensional Dirac operatorsQ(α)on the abstract boson-fermion Fock spaceℱ(ℋ,𝒦)associated with the pair(ℋ,𝒦)of complex Hilbert spaces are investigated, whereα∈Cis a perturbation parameter (a coupling constant in the context of physics) and the unperturbed operatorQ(0)is taken to be a free infinite dimensional Dirac operator. A variety of the kernel ofQ(α)is shown. It is proved that there are cases where, for all sufficiently large|α|withα<0,Q(α)has infinitely many nonzero eigenvalues even ifQ(0)has no nonzero eigenvalues. Also Fredholm property ofQ(α)restricted to a subspace ofℱ(ℋ,𝒦)is discussed.


1994 ◽  
Vol 09 (25) ◽  
pp. 2325-2333 ◽  
Author(s):  
KAZUTOSHI OHTA ◽  
HISAO SUZUKI

We investigate the spin-1/2 fermions on quantum-two spheres. It is shown that the wave functions of fermions and a Dirac operator on quantum-two spheres can be constructed in a manifestly covariant way under the quantum group SU (2)q. The concept of total angular momentum and chirality can be expressed by using q-analog of Pauli-matrices and appropriate commutation relations.


Author(s):  
PHILIPPE MEYER

AbstractThe aim of this paper is to define cubic Dirac operators for colour Lie algebras. We give a necessary and sufficient condition to construct a colour Lie algebra from an ϵ-orthogonal representation of an ϵ-quadratic colour Lie algebra. This is used to prove a strange Freudenthal–de Vries formula for basic colour Lie algebras as well as a Parthasarathy formula for cubic Dirac operators of colour Lie algebras. We calculate the cohomology induced by this Dirac operator, analogously to the algebraic Vogan conjecture proved by Huang and Pandžić.


2021 ◽  
Vol 4 (5) ◽  
pp. 1-29
Author(s):  
Lucrezia Cossetti ◽  

<abstract><p>Several recent papers have focused their attention in proving the correct analogue to the Lieb-Thirring inequalities for non self-adjoint operators and in finding bounds on the distribution of their eigenvalues in the complex plane. This paper provides some improvement in the state of the art in this topic. Precisely, we address the question of finding quantitative bounds on the discrete spectrum of the perturbed Lamé operator of elasticity $ -\Delta^\ast + V $ in terms of $ L^p $-norms of the potential. Original results within the self-adjoint framework are provided too.</p></abstract>


Analysis ◽  
1995 ◽  
Vol 15 (2) ◽  
pp. 123-150 ◽  
Author(s):  
Chris Pladdy ◽  
Yoshimi Saitō ◽  
Tomio Umeda

Sign in / Sign up

Export Citation Format

Share Document