Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm

2003 ◽  
Vol 106 (3) ◽  
pp. 435-444 ◽  
Author(s):  
T. Zhebentyayeva ◽  
G. Reighard ◽  
V. Gorina ◽  
A. Abbott
2007 ◽  
Vol 73 (20) ◽  
pp. 6519-6525 ◽  
Author(s):  
Kaspar Schwarzenbach ◽  
Franco Widmer ◽  
Jürg Enkerli

ABSTRACT Cultivation-independent analyses of fungi are used for community profiling as well as identification of specific strains in environmental samples. The objective of the present study was to adapt genotyping based on simple sequence repeat (SSR) marker detection for use in cultivation-independent monitoring of fungal species or strains in bulk soil DNA. As a model system, a fungal biocontrol agent (BCA) based on Beauveria brongniartii, for which six SSR markers have been developed, was used. Species specificity of SSR detection was verified with 15 fungal species. Real-time PCR was used to adjust for different detection sensitivities of the six SSR markers as well as for different template quantities. The limit for reliable detection per PCR assay was below 2 pg target DNA, corresponding to an estimated 45 genome copies of B. brongniartii. The cultivation-independent approach was compared to cultivation-dependent SSR analysis with soil samples from a B. brongniartii BCA-treated field plot. Results of the cultivation-independent method were consistent with cultivation-dependent genotyping and allowed for unambiguous identification and differentiation of the applied as well as indigenous strains in the samples. Due to the larger quantities of soil used for cultivation-dependent analysis, its sensitivity was higher, but cultivation-independent SSR genotyping was much faster. Therefore, cultivation-independent monitoring of B. brongniartii based on multiple SSR markers represents a rapid and strain-specific approach. This strategy may also be applicable to other fungal species or strains for which SSR markers have been developed.


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1820-1824 ◽  
Author(s):  
Emmanouil N. Tzitzikas ◽  
Antonio J. Monforte ◽  
Abdelhak Fatihi ◽  
Zacharias Kypriotakis ◽  
Tefkros A. Iacovides ◽  
...  

Seventeen simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure among traditional Greek and Cypriot melon cultigens (Cucumis melo L.). All SSR markers were polymorphic with a total number of 81 alleles, whereas all cultigens could be distinguished with at least one SSR, except cultigens 43 and 41. Reference accessions showed larger genetic variability with an average of four alleles per locus and 0.65 gene of diversity compared with an average of 2.47 alleles per locus and 0.30 of gene diversity for the Greek/Cypriot cultigens. Observed heterozygosity was very low, indicating a lack of outcrossing, at least in recent times. Unrooted neighbor-joining tree analysis and population structure analysis clustered the cultigens and the reference genotypes into five groups. All cultigens could be distinguished; the Cypriot cultigens were more closely related to the inodorus ‘Piel de Sapo’, whereas the Greek cultigens were located in an intermediate position between the inodorus ‘Piel de Sapo’ and the cantalupensis ‘Védrantais’. The cultigen ‘Kokkini’ was the most divergent among the Greek and Cypriot cultigens. This association between geographic origin and genetic similarity among Greek and Cypriot cultigens indicates geographic isolation. Most of the cultivars from the same cultivar group (i.e., inodorus, cantalupensis) clustered together, but some exceptions were found, suggesting that former inodorus landraces would have been transformed to cantalupensis as a result of intercrossing and further selection by farmers. Results of population structure analysis support mixing between cantalupensis and inodorus. ‘Agiou Basileiou’, an inodorus cultigen, was assigned to the subpopulation IV/II of which II is a pure cantalupensis subpopulation. Greek and Cypriot melon cultigens were developed from a broader germplasm base than western Mediterranean cultivars and exhibited useful for melon breeding programs genetic variability.


2015 ◽  
Vol 75 (1) ◽  
pp. 122-130 ◽  
Author(s):  
María E Salazar-Laureles ◽  
Delfina de J. Pérez-López ◽  
Andrés González-Huerta ◽  
Luis M Vázquez-García ◽  
Ernestina Valadez-Moctezuma

Genome ◽  
2009 ◽  
Vol 52 (10) ◽  
pp. 839-848 ◽  
Author(s):  
M. Cavanna ◽  
D. Torello Marinoni ◽  
G. L. Beccaro ◽  
G. Bounous

There is a lack of published microsatellite data which characterizes Ribes spp. To address this, an initial study of simple sequence repeat (SSR) variation was undertaken in 41 cultivars belonging to four species of the genus Ribes to evaluate its genetic variability. The cultivars were collected in Piedmont, northwest Italy, together with one cultivar from Switzerland. Twenty SSRs were screened for amplification and polymorphism. Seven failed to amplify, and therefore the remaining 13 were selected and used to fingerprint all the cultivars. Microsatellite analysis resulted in the identification of 38 genotypes, suggesting the existence of possible clonal genotypes and synonyms. Among the cultivars analyzed, two tetraploid accessions were found. The evaluation of genetic variability in Ribes is of fundamental importance for future nutritional breeding programs and to preserve genetic resources, as cultivar characterization permits better management of plant collections.


2016 ◽  
Vol 55 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Júlia Halász ◽  
Noémi Makovics-Zsohár ◽  
Ferenc Szőke ◽  
Sezai Ercisli ◽  
Attila Hegedűs

Genetika ◽  
2016 ◽  
Vol 48 (3) ◽  
pp. 1017-1025
Author(s):  
Hulya Unver ◽  
Ebru Sakar ◽  
Mehmet Ulas ◽  
Sezai Ercisli ◽  
Bekir Ak

Trees of 25 widely grown olive genotypes were analyzed using a set of 10 SSR (simple sequence repeat) primer pairs and to evaluate genetic diversity and reveal inter-cultivar relationships. Two well-known international olive cultivars (Chetoni and Manzanilla) and four widely grown Turkish standard cultivars (Aycalik, Edincik Su, Gemlik, Kilis Yaglik) are also included in the study to compare Kilis genotypes. The 10 polymorphic SSR loci exhibited 4 (UDO4) to 17 alleles (UDO43), with expected heterozygozity (He) ranging from 0.510 to 0.887 and a mean of 0.692 presenting high polymorphism. In this study we did not determine identical genotypes and Polateli4 and Kilis Ya?l?k (0.75), Polateli3 and Polateli7 (0.75) and Polateli6 and Manzanilla (0.70) revealed the highest similarity ratio each other. The most genetically divergent cultivars were Elbeyli8 and Musabeyli5 (0.10); Elbeyli3 and Musabeyli7 (0.15) and Musabeyli6 and Elbeyli7 (0.15), respectively.


Sign in / Sign up

Export Citation Format

Share Document