population structure analysis
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 243)

H-INDEX

21
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ming Jiang ◽  
Song Yan ◽  
Weichao Ren ◽  
Nannan Xing ◽  
Hongyuan Li ◽  
...  

Abstract Bupleurum (named “Chai-hu”) is an important traditional Chinese medicine resource in China. It has been widely used since ancient times and has antipyretic, analgesic and cholagogic functions, but there is little research on its genetic diversity. In this study, genotyping-by-sequencing (GBS) was used to detect SNP loci in 39 Bupleurum germplasm resources from different regions in China and analyse their genetic diversity. A total of 25.1 Gb of data was obtained by sequencing, with an average of 0.64 Gb per sample. After screening, 83898 high-quality SNPs were obtained. The results of genetic research were obtained by phylogenetic tree, principal component analysis and population structure analysis, and the 39 experimental materials were divided into three groups. The average observed heterozygosity and expected heterozygosity of Bupleurum populations were 0.24 and 0.17, respectively, indicating that Bupleurum populations from five different provinces had a low level of genetic diversity. Population nucleotide diversity analysis and analysis of molecular variance showed that the percentage of intrapopulation variation was 120.88%, while the percentage of interpopulation variation was only 2.46%. There was relative aggregation of Bupleurum samples with the same geographical origin, but the division of population structure was not completely correlated with sample origin. The results showed that the genetic diversity of the materials was low and that the genetic variation was narrow. This provides a good basis for the genetic breeding and protection of species diversity of Bupleurum.


2022 ◽  
Author(s):  
Prasanth Tej Kumar Jagannadham ◽  
Thirugnanavel Anbalagan ◽  
Devendra Y Upadhyay ◽  
Snehal A. Kamde ◽  
Prafulla R. Jalamkar ◽  
...  

Sweet orange (Citrus sinensis (L.) Osbeck) is an important commercial citrus fruit crop, cultivated in India and across the world. In India most of the cultivated sweet orange species were introduced varieties. In this study, we used two molecular markers, SSR and InDels, to understand the genetic diversity and population structure of seventy-two sweet orange genotypes. Genetic parameters consisted of a total number of alleles, a number of polymorphic alleles (effective alleles); genetic diversity (G.D.), expected heterozygosity (He), and the polymorphic information content (PIC) were calculated based on molecular data. Two dendrograms were constructed based on the InDels and SSR. In both the cases, they formed three major clusters showing various degrees of variations with respect to members of the clusters. Population structure analysis revealed the presence of two distinct subpopulations. Therefore, in order to address various challenges and develop sweet orange varieties with desirable traits, there is a need to broaden the genetic base of sweet orange through the intensive collection in the northeastern region. These results of intraspecific genetic variability of the collections will dictate the path for the sweet orange breeding and conservation programs in India.


2022 ◽  
Author(s):  
E LAMALAKSHMI DEVI ◽  
Umakanta Ngangkham ◽  
Akoijam Ratankumar Singh ◽  
Bhuvaneswari S ◽  
Konsam Sarika ◽  
...  

Abstract North- Eastern parts of India fall under the Eastern Himalayan region and it is a diversity hotspot of many crops, including maize. Maize is an important traditional cereal crop grown in hill ecology of the region mainly for food, fodder and feed. To tap the potentiality of maize genetic resources in crop improvement programmes, assessment of genetic diversity is a basic requirement. Hence, in the present study, assessment of genetic diversity in thirty early generation maize inbreds developed from different germplasm of NE India was taken up using genome wide distributed fifty two microsatellite markers. The marker analysis revealed a large variation with a total of 189 alleles with an average of 3.63 alleles per marker locus. The allele size ranged from 50 bp ( phi 036 ) to 295 bp ( p 101049 ) which revealed a high level of genetic diversity among the loci. The PIC value ranged from 0.17 ( umc 1622 ) to 0.76 ( umc 1153 ) with an average value of 0.49. The value of expected Heterozygosity (H Exp ) ranged from 0.19 to 0.80 with an average of 0.57, whereas the Observed Heterozygosity (H Obs ) ranged from 0 to 0.89 with a mean of 0.14.The genetic dissimilarity between the genotype pairs ranged from 0.40 to 0.64 with a mean value of 0.57. Cluster analysis resolved the inbreds into three distinct sub-clusters. Similarly, population structure analysis also classified the inbred lines into three-subpopulations. Marker-trait associations showed a total of twelve SSR markers significantly associated with seven agronomic traits. From the present study, wide genetic variability was found among the maize inbreds with high potential to contribute new beneficial and unique alleles in genetic enhancement program of maize in India and particularly, in NE region.


Author(s):  
Lijun Feng ◽  
Juntao Wang ◽  
Meiqin Mao ◽  
Wei Yang ◽  
Mark Owusu Adje ◽  
...  

Abstract Ananas comosus var. bracteatus f. tricolor (GL1) is a red pineapple accession whose mostly green leaves with chimeric white leaf margins turn red in spring and autumn and during flowering. It is an important ornamental plant and ideal plant research model for anthocyanin metabolism, chimeric leaf development, and photosynthesis. Here, we generated a highly contiguous chromosome-scale genome assembly for GL1 and compared it with other 3 published pineapple assemblies (var. comosus accessions MD2 and F153, and var. bracteatus accession CB5). The GL1 assembly has a total size of ∼461 Mb, with a contig N50 of ∼2.97 Mb and Benchmarking Universal Single-Copy Ortholog score of 97.3%. More than 99% of the contigs are anchored to 25 pseudochromosomes. Compared with the other 3 published pineapple assemblies, the GL1 assembly was confirmed to be more continuous. Our evolutionary analysis showed that the Bromeliaceae and Poaceae diverged from their nearest common ancestor ∼82.36 million years ago (MYA). Population structure analysis showed that while GL1 has not undergone admixture, bracteatus accession CB5 has resulted from admixture of 3 species of Ananas. Through classification of orthogroups, analysis of genes under positive selection, and analysis of presence/absence variants, we identified a series of genes related to anthocyanin metabolism and development of chimeric leaves. The structure and evolution of these genes were compared among the published pineapple assemblies with reveal candidate genes for these traits. The GL1 genome assembly and its comparisons with other 3 pineapple genome assemblies provide a valuable resource for the genetic improvement of pineapple and serve as a model for understanding the genomic basis of important traits in different pineapple varieties and other pan-cereal crops.


2022 ◽  
Vol 12 (1) ◽  
pp. 450
Author(s):  
Anthoula Gleridou ◽  
Ioannis Tokatlidis ◽  
Alexios Polidoros

Genetic differentiation between 40 lentil genotypes was tested using molecular markers. The genotypes were produced from a Greek landrace of commercial interest via the honeycomb breeding methodology, i.e., single-plant selection in the absence of competition, across three successive pedigree generations. The selected genotypes from each generation were examined for genetic relationships using 15 SSR molecular markers with HRM analysis. As expected, low variation among consecutive generations at the level of 2.5–7.7% was detected. Analysis of molecular variance (AMOVA) revealed that partitioning of this variation was at higher percentage within each generation’s population than between them. Population structure analysis indicated that ongoing selection could effectively shift the allelic composition in each generation. The applied honeycomb breeding methodology that effectively improved progeny yield and seed quality increased the percentage of favorable alleles altering allelic composition but not eliminating genetic variation of the breeding population.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 97
Author(s):  
Imene Khadidja Djedid ◽  
Mattia Terzaghi ◽  
Giuseppe Brundu ◽  
Angela Cicatelli ◽  
Meriem Laouar ◽  
...  

The species belonging to the genus Medicago are considered a very important genetic resource at global level both for planet’s food security and for sustainable rangelands management. The checklist of the Italian flora (2021) includes a total number of 40 Medicago species for Italy, and 27 for Campania region, with a number of doubtful records or related to species no more found in the wild. In this study, 10 Medicago species native to Campania region, and one archaeophyte (M. sativa), identified by means of morphological diagnostic characters, were analyzed in a blind test to assay the efficacy of nine microsatellite markers (five cp-SSRs and four n-SSRs). A total number of 33 individuals from 6 locations were sampled and genotyped. All markers were polymorphic, 40 alleles were obtained with n-SSRs ranging from 8–12 alleles per locus with an average of 10 alleles per marker, PIC values ranged from 0.672 to 0.847, and the most polymorphic SSR was MTIC 564. The cp-SSRs markers were highly polymorphic too; PIC values ranged from 0.644 to 0.891 with an average of 0.776, the most polymorphic cp-SSR was CCMP10. 56 alleles were obtained with cp-SSRs ranging from 7 to 17 alleles per locus with an average of 11. AMOVA analysis with n-SSR markers highlighted a great level of genetic differentiation among the 11 species, with a statistically significant fixation index (FST). UPGMA clustering and Bayesian-based population structure analysis assigned these 11 species to two main clusters, but the distribution of species within clusters was not the same for the two analyses. In conclusion, our results demonstrated that the combination of the used SSRs well distinguished the 11 Medicago species. Moreover, our results demonstrated that the use of a limited number of SSRs might be considered for further genetic studies on other Medicago species.


2021 ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra Bahri ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
Udupa . Sripa ◽  
...  

Abstract Background: Septoria tritici blotch (STB) has marked durum wheat production worldwide. This fungal disease is until today a challenge for farmers, researchers and breeders all united in the aim of reducing its damage and improving wheat resistance. Tunisian durum wheat landraces were reported to be valuable genetic resources for resistance to biotic and abiotic stresses and are therefore prominently deployed in breeding programs to develop new varieties adapted to fungal diseases as STB and to climate change constraints overall.Results: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC >0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. Conclusions: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. The grouping pattern of accessions appear to be associated, to some extent, with the geographical pattern of the landraces. We suggested that GS2 accessions were mostly introduced from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 suscpetible Azizi and Jneh Khotifa accessions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261461
Author(s):  
Girma Mengistu ◽  
Hussein Shimelis ◽  
Ermias Assefa ◽  
Dagnachew Lule

In warm-humid ago-ecologies of the world, sorghum [Sorghum bicolor (L.) Moench] production is severely affected by anthracnose disease caused by Colletotrichum sublineolum Henn. New sources of anthracnose resistance should be identified to introgress novel genes into susceptible varieties in resistance breeding programs. The objective of this study was to determine genome-wide association of Diversity Arrays Technology Sequencing (DArTseq) based single nucleotide polymorphisms (SNP) markers and anthracnose resistance genes in diverse sorghum populations for resistance breeding. Three hundred sixty-six sorghum populations were assessed for anthracnose resistance in three seasons in western Ethiopia using artificial inoculation. Data on anthracnose severity and the relative area under the disease progress curve were computed. Furthermore, the test populations were genotyped using SNP markers with DArTseq protocol. Population structure analysis and genome-wide association mapping were undertaken based on 11,643 SNPs with <10% missing data. The evaluated population was grouped into eight distinct genetic clusters. A total of eight significant (P < 0.001) marker-trait associations (MTAs) were detected, explaining 4.86–15.9% of the phenotypic variation for anthracnose resistance. Out of which the four markers were above the cutoff point. The significant MTAs in the assessed sorghum population are useful for marker-assisted selection (MAS) in anthracnose resistance breeding programs and for gene and quantitative trait loci (QTL) mapping.


2021 ◽  
Author(s):  
Alix Andrea Guevara Tique ◽  
Roberto C. Torres ◽  
Fabian Leonardo Castro Valencia ◽  
John Jairo Suárez ◽  
Ángel Alexandro Criollo Rayo ◽  
...  

Helicobacter pylori have coevolved with mankind since its origins, adapting to different human groups. In America H. pylori has evolved in several subpopulations specific for regions or even countries. In this study we analyzed the genome of 163 Colombian strains along with 1,113 strains that represent worldwide H. pylori populations to better discern the ancestry and adaption to Colombian people. Population structure was inferred with FineStructure and chromosome painting identifying the proportion of ancestries in Colombian isolates. Phylogenetic relationship was analyzed using the SNPs present in the core genome. Also, a Fst analysis was done to identify the gene variants with the strongest fixation in the identified Colombian subpopulations in relation to their parent population hspSWEurope. Worldwide, population structure analysis allowed the identification of two Colombian subpopulations, the previously described hspSWEuropeColombia and a novel subpopulation named hspColombia. In addition, three subgroups of H. pylori were identified within hspColombia that follow their geographic origin. The Colombian H. pylori subpopulations represent an admixture of European, African and Native indigenous ancestry; although some genomes showed a high proportion of self-identity, suggesting a strong adaption to these mestizo Colombian groups. The Fst analysis identified 82 SNPs significantly fixed in 26 genes of the hspColombia subpopulation that encode mainly for outer membrane proteins and proteins involved in central metabolism. The strongest fixation indices were identified in genes encoding the membrane proteins HofC, HopE, FrpB-4 and Sialidase A. These findings demonstrate that H. pylori has evolved in Colombia to give rise to subpopulations following a geographical structure, evolving to an autochthonous genetic pool, drive by a positive selective pressure especially on genes encoding for outer membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document