scholarly journals An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis

2017 ◽  
Vol 130 (12) ◽  
pp. 2527-2541 ◽  
Author(s):  
Geert van Geest ◽  
Peter M. Bourke ◽  
Roeland E. Voorrips ◽  
Agnieszka Marasek-Ciolakowska ◽  
Yanlin Liao ◽  
...  
Genome ◽  
2003 ◽  
Vol 46 (5) ◽  
pp. 738-744 ◽  
Author(s):  
M E Humphry ◽  
T Magner ◽  
C L McIntyre ◽  
E A.B Aitken ◽  
C J Liu

A major locus conferring resistance to the causal organism of powdery mildew, Erysiphe polygoni DC, in mungbean (Vigna radiata L. Wilczek) was identified using QTL analysis with a population of 147 recombinant inbred individuals. The population was derived from a cross between 'Berken', a highly susceptible variety, and ATF 3640, a highly resistant line. To test for response to powdery mildew, F7 and F8 lines were inoculated by dispersing decaying mungbean leaves with residual conidia of E. polygoni amongst the young plants to create an artificial epidemic and assayed in a glasshouse facility. To generate a linkage map, 322 RFLP clones were tested against the two parents and 51 of these were selected to screen the mapping population. The 51 probes generated 52 mapped loci, which were used to construct a linkage map spanning 350 cM of the mungbean genome over 10 linkage groups. Using these markers, a single locus was identified that explained up to a maximum of 86% of the total variation in the resistance response to the pathogen.Key words: mungbean, powdery mildew, Erysiphe polygoni, QTL, molecular markers.


2020 ◽  
pp. 191-198 ◽  
Author(s):  
D.C. Lopez Arias ◽  
A. Chastellier ◽  
T. Thouroude ◽  
M. Leduc ◽  
F. Foucher ◽  
...  

2003 ◽  
Vol 108 (3) ◽  
pp. 433-441 ◽  
Author(s):  
M. Scalfi ◽  
M. Troggio ◽  
P. Piovani ◽  
S. Leonardi ◽  
G. Magnaschi ◽  
...  

2004 ◽  
Vol 108 (5) ◽  
pp. 967-967 ◽  
Author(s):  
M. Scalfi ◽  
M. Troggio ◽  
P. Piovani ◽  
S. Leonardi ◽  
G. Magnaschi ◽  
...  

2018 ◽  
pp. 25-30
Author(s):  
D. Torello Marinoni ◽  
N. Valentini ◽  
E. Portis ◽  
A. Acquadro ◽  
C. Beltramo ◽  
...  

2019 ◽  
Vol 99 (5) ◽  
pp. 599-610
Author(s):  
Junhuan Zhang ◽  
Haoyuan Sun ◽  
Li Yang ◽  
Fengchao Jiang ◽  
Meiling Zhang ◽  
...  

A high-density genetic map of apricot (Prunus armeniaca L.) was constructed using an F1 population constructed by crossing two main Chinese cultivars ‘Chuanzhihong’ and ‘Luotuohuang’, coupled with a recently developed reduced representation library (RRL) sequencing. The average sequencing depth was 38.97 in ‘Chuanzhihong’ (female parent), 33.05 in ‘Luotuohuang’ (male parent), and 8.91 in each progeny. Based on the sequencing data, 12 451 polymorphic markers were developed and used in the construction of the genetic linkage map. The final map of apricot comprised eight linkage groups, including 1991 markers, and covered 886.25 cM of the total map length. The average distance between adjacent markers was narrowed to 0.46 cM. Gaps larger than 5 cM only accounted for <0.33%. To our knowledge, this map is the densest genetic linkage map that is currently available for apricot research. It is a valuable linkage map for quantitative trait loci (QTLs) identification of important agronomic traits. Moreover, the high marker density and well-ordered markers that this linkage map provides will be useful for molecular breeding of apricot as well. In this study, we applied this map in the QTL analysis of an important agronomic trait, pistil abortion. Several QTLs were detected and mapped respectively to the middle regions of LG5 (51.005∼59.4 cM) and LG6 (72.884∼76.562 cM), with nine SLAF markers closely linked to pistil abortion. The high-density genetic map and QTLs detected in this study will facilitate marker-assisted breeding and apricot genomic study.


Sign in / Sign up

Export Citation Format

Share Document