Arsenic in Groundwater of the Bengal Delta Plain Aquifers in Bangladesh

2002 ◽  
Vol 69 (4) ◽  
pp. 538-545 ◽  
Author(s):  
P. Bhattacharya ◽  
G. Jacks ◽  
K. M. Ahmed ◽  
J. Routh ◽  
A. A. Khan
Author(s):  
Md. Shajedul Islam ◽  
M. G. Mostafa

Abstract Arsenic contamination of alluvial aquifers of the Bengal delta plain causes a serious threat to human health for over 75 million people. The study aimed to explore the impacts of chemical fertilizer on arsenic mobilization in the sedimentary deposition of the alluvial Bengal delta plain. It selected ten comparatively higher affected Districts and the least affected two Divisions as a referral study site. The countrywide pooled concentration of arsenic in groundwater was 109.75 μg/L (52.59, 166.91) at a 95% confidence interval, which was double the national guideline value (50 μg/L). The analysis results showed a strong positive correlation (r ≥ 0.5) of arsenic with NO3, NH4, PO4, SO4, Ca, and K, where a portion of those species originated from fertilizer leaching into groundwater. The results showed that PO4 played a significant influence in arsenic mobilization, but the role of NO3, SO4, and NH4 was not clear at certain lithological conditions. It also showed that clay, peat, silt-clay, and rich microbial community with sufficiently organic carbon loaded soils could lead to an increase in arsenic mobilization. Finally, the study observed that the overall lithological conditions are the main reason for the high arsenic load in the study area.


2016 ◽  
Author(s):  
Jishnu Adhikari ◽  
◽  
Debashis Chatterjee ◽  
Shilajit Barua ◽  
Thomas R. Kulp

Limnology ◽  
2009 ◽  
Vol 11 (2) ◽  
pp. 133-142 ◽  
Author(s):  
Hossain M. Anawar ◽  
Takahito Yoshioka ◽  
Eiichi Konohira ◽  
Junji Akai ◽  
M. C. Freitas ◽  
...  

Author(s):  
Pinaki Sar ◽  
Balaram Mohapatra ◽  
Soma Ghosh ◽  
Dhiraj Paul ◽  
Angana Sarkar ◽  
...  

2001 ◽  
Vol 9 (3) ◽  
pp. 189-220 ◽  
Author(s):  
A B Mukherjee ◽  
P Bhattacharya

The purpose of this paper is to provide an overview of the problems concerning the widespread occurrences of arsenic in groundwater in Bangladesh, a land with enormous resources of precipitation, surface water, and groundwater. Because of the potential risk of microbiological contamination in the surface water, groundwater was relied on as an alternate source of drinking water. Exploitation of groundwater has increased dramatically in Bangladesh since the 1960s to provide safe water for drinking and to sustain wetland agriculture. The presence of arsenic in the groundwater at elevated concentrations has raised a serious threat to public health in the region. Nearly 60–75 million people inhabiting a large geographical area are at potential risk of arsenic exposure, and several thousands have already been affected by chronic arsenicosis. The source of arsenic in groundwater is geogenic and restricted within the Holocene sedimentary aquifers. Mobilization of arsenic from the alluvial aquifers is primarily effected through a mechanism of reductive dissolution of the iron oxyhydroxides within the sediments, rather than by the oxidation of pyrite, as has been hypothesized by other workers. The problem is further accentuated by the fact that arsenic is also found at elevated concentrations in vegetables and rice grown in the areas where high-arsenic groundwater is used for irrigation. Dietary habits among the population are also an important pathway for arsenic ingestion. Studies are in progress at national as well as international levels to alleviate the arsenic crisis in Bangladesh. Besides the identification of arsenic-free tubewells in the affected areas for drinking purposes, purification of groundwater at household level by low-cost arsenic removal techniques is suggested. Rehabilitation of the patients with chronic arsenicosis and arsenic education programs for rural communities must be addressed urgently by the government of Bangladesh. Key words: arsenic, groundwater, chemistry, redox, causes, effects, Bangladesh.


2010 ◽  
Vol 25 (12) ◽  
pp. 1805-1814 ◽  
Author(s):  
Sandeep Kar ◽  
Jyoti Prakash Maity ◽  
Jiin-Shuh Jean ◽  
Chia-Chuan Liu ◽  
Bibhash Nath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document