Riddle of arsenic in groundwater of Bengal Delta Plain—role of non-inland source and redox traps

2005 ◽  
Vol 49 (2) ◽  
pp. 188-206 ◽  
Author(s):  
D. Chatterjee ◽  
R. K. Roy ◽  
B. B. Basu
Author(s):  
Md. Shajedul Islam ◽  
M. G. Mostafa

Abstract Arsenic contamination of alluvial aquifers of the Bengal delta plain causes a serious threat to human health for over 75 million people. The study aimed to explore the impacts of chemical fertilizer on arsenic mobilization in the sedimentary deposition of the alluvial Bengal delta plain. It selected ten comparatively higher affected Districts and the least affected two Divisions as a referral study site. The countrywide pooled concentration of arsenic in groundwater was 109.75 μg/L (52.59, 166.91) at a 95% confidence interval, which was double the national guideline value (50 μg/L). The analysis results showed a strong positive correlation (r ≥ 0.5) of arsenic with NO3, NH4, PO4, SO4, Ca, and K, where a portion of those species originated from fertilizer leaching into groundwater. The results showed that PO4 played a significant influence in arsenic mobilization, but the role of NO3, SO4, and NH4 was not clear at certain lithological conditions. It also showed that clay, peat, silt-clay, and rich microbial community with sufficiently organic carbon loaded soils could lead to an increase in arsenic mobilization. Finally, the study observed that the overall lithological conditions are the main reason for the high arsenic load in the study area.


2002 ◽  
Vol 69 (4) ◽  
pp. 538-545 ◽  
Author(s):  
P. Bhattacharya ◽  
G. Jacks ◽  
K. M. Ahmed ◽  
J. Routh ◽  
A. A. Khan

2020 ◽  
Vol 1 (8) ◽  
pp. 372-382
Author(s):  
Pinaki Ghosh ◽  
Ayan Das ◽  
Madhurina Majunder ◽  
Samir Kumar Mukherjee ◽  
Debashis Chatterjee

In Bengal Delta Plain (BDP), shallow aquifer (<50 m) is often contaminated with Arsenic (As). The phenomenon is wide spread in nature thought the BDP notable in Nadia district of west Bengal. The present study highlights a primary screening of As, Fe, MPN and FC in monitored shallow wells. The study designed for two different sites (site-A, High As and site-B Low As area). The water quality monitoring results suggest that high As concentration (Range- 103-171 μgL-1) has been noticed in site A when compared with site B (range-53-99 μgL-1). In sites A, the Fe concentration is high and low in site B. The correlation study (r2) between arsenic and iron are also determined. The value of r2 is 0.94 for site A and 0.73 for site B. The water quality results suggest that the nature of the monitor aquifer is anoxic in nature with low Eh, DO absent and low NO3- and SO4+. Major anion is HCO3- (376 mgL-1) followed by Cl- (28 mgL-1). However chloride concentration is largely varying in the monitored tube well. Microbial study (MPN & FC count) also indicates some relationship among MPN (r2-0.32) and Fe (r2 -0.24). However the relationship is scatter when As concentration is low. The linear trended has also obtained when both As, MPN and FC are high. The physical observation of plate count (Color reaction in Chromo colt Agar) has also been observed. This is a clear indicator of fecal coli form contamination. The study indicates that the microbial mobilization of As is the key factor for enrichment of As in ground water. The possible sources of the microbes are local land-use pattern (notable pit-latrine). Finally, the study highlights the role of coli forms bacteria (Both facultative and non-facultative) are wide spread in shallow rural aquifer of Bengal. Thus microbial process possibly enriches arsenic in shallow ground water.


2016 ◽  
Author(s):  
Jishnu Adhikari ◽  
◽  
Debashis Chatterjee ◽  
Shilajit Barua ◽  
Thomas R. Kulp

Limnology ◽  
2009 ◽  
Vol 11 (2) ◽  
pp. 133-142 ◽  
Author(s):  
Hossain M. Anawar ◽  
Takahito Yoshioka ◽  
Eiichi Konohira ◽  
Junji Akai ◽  
M. C. Freitas ◽  
...  

Author(s):  
Pinaki Sar ◽  
Balaram Mohapatra ◽  
Soma Ghosh ◽  
Dhiraj Paul ◽  
Angana Sarkar ◽  
...  

2001 ◽  
Vol 9 (3) ◽  
pp. 189-220 ◽  
Author(s):  
A B Mukherjee ◽  
P Bhattacharya

The purpose of this paper is to provide an overview of the problems concerning the widespread occurrences of arsenic in groundwater in Bangladesh, a land with enormous resources of precipitation, surface water, and groundwater. Because of the potential risk of microbiological contamination in the surface water, groundwater was relied on as an alternate source of drinking water. Exploitation of groundwater has increased dramatically in Bangladesh since the 1960s to provide safe water for drinking and to sustain wetland agriculture. The presence of arsenic in the groundwater at elevated concentrations has raised a serious threat to public health in the region. Nearly 60–75 million people inhabiting a large geographical area are at potential risk of arsenic exposure, and several thousands have already been affected by chronic arsenicosis. The source of arsenic in groundwater is geogenic and restricted within the Holocene sedimentary aquifers. Mobilization of arsenic from the alluvial aquifers is primarily effected through a mechanism of reductive dissolution of the iron oxyhydroxides within the sediments, rather than by the oxidation of pyrite, as has been hypothesized by other workers. The problem is further accentuated by the fact that arsenic is also found at elevated concentrations in vegetables and rice grown in the areas where high-arsenic groundwater is used for irrigation. Dietary habits among the population are also an important pathway for arsenic ingestion. Studies are in progress at national as well as international levels to alleviate the arsenic crisis in Bangladesh. Besides the identification of arsenic-free tubewells in the affected areas for drinking purposes, purification of groundwater at household level by low-cost arsenic removal techniques is suggested. Rehabilitation of the patients with chronic arsenicosis and arsenic education programs for rural communities must be addressed urgently by the government of Bangladesh. Key words: arsenic, groundwater, chemistry, redox, causes, effects, Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document