Determination of total blood volume by indicator dilution: a comparison of mean transit time and mass conservation principle

2001 ◽  
Vol 27 (4) ◽  
pp. 767-774 ◽  
Author(s):  
O. Picker ◽  
G. Wietasch ◽  
T.W.L. Scheeren ◽  
J.O. Arndt
1996 ◽  
Vol 81 (2) ◽  
pp. 895-904 ◽  
Author(s):  
M. F. Humer ◽  
P. T. Phang ◽  
B. P. Friesen ◽  
M. F. Allard ◽  
C. M. Goddard ◽  
...  

We tested the hypothesis that endotoxin increases the heterogeneity of gut capillary transit times and impairs oxygen extraction. The gut critical oxygen extraction ratio was determined by measuring multiple oxygen delivery-consumption points during progressive phlebotomy in eight control and eight endotoxin-infused anesthetized pigs. In multiple 1- to 2-g samples of small bowel, we measured blood volume (radiolabeled red blood cells) and flow (radiolabeled 15-microns microspheres) before and after critical oxygen extraction. Red blood cell transit time (= volume/flow) multiplied by morphologically determined capillary/total blood volume gave capillary transit time. During hemorrhage, capillary/total blood volume did not change in the endotoxin group (0.5 +/- 4.5%) but increased in the control group (17.6 +/- 2.5%; P < 0.05) due to a decrease in total gut blood volume. Flow decreased significantly in the endotoxin group (36 +/- 10%; P < 0.05) but not in the control group (12 +/- 10%). Capillary transit-time heterogeneity increased in the endotoxin group (12.3 +/- 4.9%) compared with the control group (-5.8 +/- 7.4%; P < 0.05), predicting a critical oxygen extraction ratio 0.14 lower in the endotoxin group than in the control group (K. R. Walley. J. Appl. Physiol. 81: 885–894, 1996). This matches the measured difference (endotoxin group, 0.60 +/- 0.04; control group, 0.74 +/- 0.03; P < 0.05). Increased heterogeneity of capillary transit times may be an important cause of impaired oxygen extraction.


1959 ◽  
Vol 196 (3) ◽  
pp. 499-501 ◽  
Author(s):  
Robert C. Schlant ◽  
Paul Novack ◽  
William L. Kraus ◽  
Charles B. Moore ◽  
Florence W. Haynes ◽  
...  

Central blood volume (cardiac output times mean transit time) from right atrium to ascending aorta was determined by the indicator-dilution method in 22 open-chested dogs which had previously had their red blood cells tagged with Cr51. The actual amount of blood in the heart and lungs was calculated from the total radioactivity in the blended homogenate of these organs. The two measurements of central blood volume correlated well ( r = +.88), the indicator-dilution volumes averaging 12% greater. The discrepancy between measurements is probably related to the pulmonary circuit having a lower hematocrit than the large vessels. The results substantiate the use of the Stewart-Hamilton formula (cardiac output times mean transit time) to measure central blood volume.


1959 ◽  
Vol 196 (4) ◽  
pp. 703-705 ◽  
Author(s):  
E. J. Fedor ◽  
B. Fisher

Dogs lightly anesthetized with ether, maintained between 23–24°C for 2 hours and rewarmed, were subjected to simultaneous determinations of red cell volume (Cr51) and plasma volume (T-1824). Red cell volume values were unchanged during the course of the experiment. Plasma volumes were significantly decreased during hypothermia and were transiently elevated during rewarming. Twenty-four hours after rewarming, total blood volume and plasma volume values were not significantly different from control values. It would seem that circulatory failure (‘rewarming shock’) is not a usual feature of rewarming following hypothermia of 2 hours duration.


Sign in / Sign up

Export Citation Format

Share Document