susceptibility contrast
Recently Published Documents


TOTAL DOCUMENTS

603
(FIVE YEARS 119)

H-INDEX

56
(FIVE YEARS 7)

Author(s):  
Arthur Chakwizira ◽  
André Ahlgren ◽  
Linda Knutsson ◽  
Ronnie Wirestam

Abstract Objective Deconvolution is an ill-posed inverse problem that tends to yield non-physiological residue functions R(t) in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). In this study, the use of Bézier curves is proposed for obtaining physiologically reasonable residue functions in perfusion MRI. Materials and methods Cubic Bézier curves were employed, ensuring R(0) = 1, bounded-input, bounded-output stability and a non-negative monotonically decreasing solution, resulting in 5 parameters to be optimized. Bézier deconvolution (BzD), implemented in a Bayesian framework, was tested by simulation under realistic conditions, including effects of arterial delay and dispersion. BzD was also applied to DSC-MRI data from a healthy volunteer. Results Bézier deconvolution showed robustness to different underlying residue function shapes. Accurate perfusion estimates were observed, except for boxcar residue functions at low signal-to-noise ratio. BzD involving corrections for delay, dispersion, and delay with dispersion generally returned accurate results, except for some degree of cerebral blood flow (CBF) overestimation at low levels of each effect. Maps of mean transit time and delay were markedly different between BzD and block-circulant singular value decomposition (oSVD) deconvolution. Discussion A novel DSC-MRI deconvolution method based on Bézier curves was implemented and evaluated. BzD produced physiologically plausible impulse response, without spurious oscillations, with generally less CBF underestimation than oSVD.


2021 ◽  
Author(s):  
Ece Su Sayin ◽  
Jacob Schulman ◽  
Julien Poublanc ◽  
Harrison Levine ◽  
Lakshmikumar Venkatraghavan ◽  
...  

Assessment of resting cerebrovascular perfusion measures (mean transit time, cerebral blood flow and cerebral blood volume) with magnetic resonance imaging currently requires the intravascular injection of the dynamic susceptibility contrast agent gadolinium. An initial comparison between hypoxia-induced deoxyhemoglobin and gadolinium was made for these measures in six healthy participants. A bolus of deoxyhemoglobin is generated in the lung via transient hypoxia induced by an available computer-controlled gas blender technology employing sequential gas delivery (RespirAct). We hypothesised and confirmed perfusion measures from both susceptibility contrast agents would yield similar spatial patterns of cerebrovascular perfusion measures. We conclude that hypoxia-induced deoxyhemoglobin, an endogenously, non-invasively generated, non-allergenic, non-toxic, recyclable, environmentally innocuous molecule, may be suitable to become the first new magnetic resonance imaging susceptibility contrast agent introduction since gadolinium.


2021 ◽  
pp. 028418512110541
Author(s):  
Xiaofang Zhou ◽  
Yan Su ◽  
Wanrong Huang ◽  
Xiaojun Lin ◽  
Zhen Xing ◽  
...  

Background The differentiation of supratentorial pilocytic astrocytomas (STPAs) and supratentorial extraventricular ependymomas (STEEs) is clinically pivotal because of distinct therapeutic management and prognosis, which is sometimes challenging to both neuroradiologists and pathologists. Purpose To explore and compare the conventional and advanced magnetic resonance imaging (MRI) features between STPA and STEE. Material and Methods A total of 23 patients with STPAs and 23 patients with STEEs were reviewed in this study. All patients performed conventional MRI, susceptibility-weighted imaging (SWI), and diffusion-weighted imaging (DWI), and 34 patients (17 with STPAs and 17 with STEEs) examined dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI) in addition. Clinical data, conventional MRI features, minimum relative apparent diffusion coefficient ratio (rADCmin), and maximum relative cerebral blood volume ratio (rCBVmax) were compared between the two groups and subgroups. The optimal cutoff values of rADCmin and rCBVmax with sensitivity and specificity were calculated. Results STPA manifested similar to STEE as a solid-cystic mass but more frequently presented with a marked enhancing deep nodule ( P = 0.02), no peritumoral edema ( P = 0.036), higher rADCmin value (2.0 ± 0.5 vs. 0.9 ± 0.2; P < 0.001), and lower rCBVmax value (2.1 ± 0.4 vs. 14.4 ± 5.5; P < 0.001). The cutoff value of >1.39 for rADCmin and ≤ 2.81 for rCBVmax produced a high sensitivity of 95.65% and 100.0%, respectively, and all produced a specificity of 100.0% in differentiating STPAs from STEEs. Conclusion Multiparametric MRI techniques including conventional MRI, DWI, and DSC-PWI contribute to the differential diagnosis of STPA and STEE.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Priscillia Egbelehulu ◽  
Abu Mallam ◽  
Abel. U. Osagie

This study analyzes aeromagnetic data over a section of Gwagwalada in Abuja. The data were obtained from the Nigerian Geological Survey Agency acquired at 100 m terrain clearance. The study area spans longitudes 7.0875 E to 7.1458 E and latitude 8.9625 N to 9.0 N (about 27 km2). The dataset was reduced to the equator (RTE) and downward continued by 50 m. Analytic signal filter was applied on TMI-RTE grid to detect the edges of the magnetic bodies present. The structure was observed to trend NE-SW. The CET lineament map reveals intersections such as junctions and corners on the map. This revealed structure liable for potential mineralization zone. Euler deconvolution technique applied over the transformed dataset ascertain the location and depth of the structure,having a maximum depth of about 421 m and a minimum of about 59 m.Variation in magnetic depth and susceptibility contrast is specified by the gridded SPI depth map.


Sign in / Sign up

Export Citation Format

Share Document