Optimal rib layout design for noise reduction based on topology optimization and acoustic contribution analysis

2017 ◽  
Vol 56 (5) ◽  
pp. 1093-1108 ◽  
Author(s):  
Jinpeng Wang ◽  
Shan Chang ◽  
Geng Liu ◽  
Lan Liu ◽  
Liyan Wu
Author(s):  
J. P. Wang ◽  
G. Liu ◽  
S. Chang ◽  
L. Y. Wu

In this paper, topology optimization of gearbox to reduce the radiated noise is studied based on the analysis of modal acoustic contribution and panel acoustic contribution. Firstly, the bearing dynamic loads are obtained by solving the dynamic equations of gear system. Secondly, the vibration of gearbox is calculated using FEM and the radiated noise is simulated using BEM by taking these bearing dynamic loads as excitations. Thirdly, the panel having larger contribution to the sound pressure level (SPL) at a specific field point is found by panel acoustic contribution analysis (PACA), and this panel is taken as design domain. The mode order with larger contribution is determined by modal acoustic contribution analysis (MACA), and making corresponding natural frequency becomes far away from excited frequency is taken as a constraint. Finally, the topology optimization of gearbox is completed using SIMP method, and the ribs are arranged according to the optimization results. The results show that the equivalent sound pressure level at objective field point can be reduced obviously by using this method.


Author(s):  
G. Liu ◽  
J. P. Wang ◽  
S. Chang

In this paper, a method to determine the optimal rib layout of gearbox for the noise reduction is proposed based on acoustic contribution analysis and topology optimization. Firstly, the radiated noise is simulated using the finite element method (FEM) and boundary element method (BEM). The field point with maximum sound pressure is taken as the objective field point. Secondly, the surface of gearbox is divided into different regions and the region with maximum acoustic contribution to the sound pressure on the objective field point is found by acoustic transfer vector analysis and acoustic contribution analysis. Thirdly, the topology optimization model is established to reduce the velocities on the region with maximum acoustic contribution. Lastly, the topology optimization model is solved using the SIMP method and the ribs can be arranged according to the results of topology optimization. The simulation results show that the sound pressure on objective field point is reduced remarkably by using this method.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhaohua Wang ◽  
Chenglong Yang ◽  
Xiaopeng Xu ◽  
Dezhuang Song ◽  
Fenghe Wu

As the main load-bearing structure of heavy machine tools, cranes, and other high-end equipment, the large-scale box structures usually bear moving loads, and the results of direct topology optimization usually have some problems: the load transfer skeleton is difficult to identify and all working conditions are difficult to consider comprehensively. In this paper, a layout design method of stiffened plates for the large-scale box structures under moving loads based on multiworking-condition topology optimization is proposed. Based on the equivalent principle of force, the box structures are simplified into the main bending functional section, main torsional functional section, and auxiliary functional section by the magnitude of loads and moments, which can reduce the structural dimension and complexity in topology optimization. Then, the moving loads are simplified to some multiple position loads, and the comprehensive evaluation function is constructed by the compromise programming method. The mathematical model of multiworking-condition topology optimization is established to optimize the functional sections. Taking a crossbeam of superheavy turning and milling machining center as an example, optimization results show that the stiffness and strength of the crossbeam are increased by 17.39% and 19.9%, respectively, while the weight is reduced by 12.57%. It shows that the method proposed in this paper has better practicability and effectiveness for large-scale box structures.


2011 ◽  
Vol 255-260 ◽  
pp. 2388-2393 ◽  
Author(s):  
Ji Zhuo Huang ◽  
Zhan Wang

Application of continuum structural topology optimization methods to the layout design of bracing systems for multistory steel frame buildings under earthquake loads is explored in this work. A weighted average strain energy sensitivity of element is formulated to be served as the element removal criterion in the optimization process, and then an ESO-based continuum structural topology optimization method for the layout design of multistory steel frame bracing systems subjected to earthquake-induced ground motions is presented. In each iterative design, an approximate reanalysis technique named CA method is adopted to reduce the computational effort. Finally, a design example is given to demonstrate the effectiveness of the presented optimization method for the optimal layout design of steel frame bracing systems under earthquake loads.


Sign in / Sign up

Export Citation Format

Share Document