sound pressure level
Recently Published Documents


TOTAL DOCUMENTS

752
(FIVE YEARS 184)

H-INDEX

33
(FIVE YEARS 4)

SIMULATION ◽  
2021 ◽  
pp. 003754972110648
Author(s):  
Enlai Zhang ◽  
Jiading Lian ◽  
Jingjing Zhang ◽  
Jiahe Lin

Aiming at the characteristics of high decibels and multiple samples for forklift noise, a subjective evaluation method of rank score comparison (RSC) based on annoyance is presented. After pre-evaluation, comprehensive evaluation and data tests on collected 50 noise samples, the annoyance grades of all noise samples were obtained, and seven psycho-acoustic parameters including linear sound pressure level (LSPL), A-weighted sound pressure level (ASPL), loudness, sharpness, roughness, impulsiveness and articulation index (AI) were determined by correlation calculation. Considering the nonlinear characteristics of human ear subjective perception, objective parameters, and annoyance were used as input and output variables correspondingly and then three nonlinear mathematical models of forklift acoustic annoyance were established using traditional artificial neural network (ANN), genetic-algorithm neural network (GANN), and particle-swarm-optimization neural network (PSONN). Moreover, the prediction accuracy of the three models was tested and compared by sample data. The results indicate that the average relative error (ARE) between the experimental and predicted values of acoustic annoyance based on PSONN model is 3.893%, which provides an effective technical support for further optimization and subjective evaluation.


Author(s):  
Shihui Xiong ◽  
Jingcheng Wang ◽  
Yuan Li ◽  
Yuquan Wen ◽  
Yujun Wu ◽  
...  

To solve the problem of large operating noise of existing pyrotechnic separation devices, a new low-noise pyrotechnic separation device is designed by changing the utilisation mode of pyrotechnic separation, using micro gas pyrotechnic as heat sources, and shape memory alloy material to convert heat energy into mechanical energy. The results showed that the separation time was 1.526 s when the preload was 20 kN, and the maximum shock response was 319 G (2268 Hz) for 100 Hz–100 kHz. When used underwater, the maximum sound pressure level is 106.9 dB at 12,698 Hz and 98.5 dB from 10 Hz–5 kHz. Compared with a conventional separation nut, the frequency band sound pressure level can be reduced by more than 70 dB, realising underwater low-noise separation.


2021 ◽  
Vol 6 (1(62)) ◽  
pp. 14-18
Author(s):  
Vitaly Zaets ◽  
Dmytro Bida

The object of research is the sound field from linear sound sources between two parallel impedance noise barriers. The presence of barriers changes the structure of the sound field, as a result of which the sound pressure level in the area between the barriers increases. An increase in sound levels leads to both a decrease in the effectiveness of noise barriers and an increase in the negative impact on road users. One of the ways out of this situation is the construction of barriers with sound-absorbing properties. In this paper, the influence of the impedance properties of the barriers at the level of sound pressure in the area between the barriers is considered. The finite element method was chosen to calculate the sound field around the barrier. A computer model of a linear sound source with vertical sound-absorbing barriers on both sides of the source was built in the Comsol Multiphysics software environment. The sound absorption properties of the barrier were determined by the acoustic impedance of the face of the barrier. The sound fields were calculated in octave bands with geometric mean frequencies from 31 to 500 Hz. In addition, the parameters that were also analyzed were the distance between the barriers and their height. The solution of the problem made it possible to obtain a field of sound pressure levels around the barrier. Changeable simulation parameters made it possible to analyze a large number of situations of relative position of barriers and their heights encountered in engineering. Studies have shown that only at low frequencies and relatively small distances between barriers, the sound pressure level can increase significantly. However, it has also been shown that the use of sound-absorbing lining of noise barriers can reduce the sound pressure levels in the area between the barriers and improve the acoustic conditions for road users.


2021 ◽  
Vol 60 (6) ◽  
pp. 5949-5976
Author(s):  
Vishalagoud S. Patil ◽  
Farheen Banoo ◽  
R.V. Kurahatti ◽  
Arun Y. Patil ◽  
G.U. Raju ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 547
Author(s):  
Jinyu Liu ◽  
Naohisa Inoue ◽  
Tetsuya Sakuma

In the ISO 16283 series for field measurement of sound insulation, a low-frequency procedure is specified for determining indoor average sound pressure level, which is the so-called corner method. In the procedure, additional measurements are required in the corners in addition to the default measurements in the central zone, and the indoor average level is corrected with the highest level in the corners. However, this procedure was empirically proposed, and its validity is not fully examined for façade sound insulation. In this paper, detailed experiments were performed in a mock lightweight wooden house for validating the low-frequency procedure for façade sound insulation measurement. The results suggest that a correction with energy-averaging level of all corners is more reliable than with the maximum level, and the uncertainty in the default procedure is sufficiently improved with additional measurements in four non-adjacent corners. Moreover, the effect of the detailed position of the microphone around the corner was clarified for a more specific instruction.


2021 ◽  
Vol 69 (6) ◽  
pp. 518-529
Author(s):  
Changyong Jiang ◽  
Xiang Liu ◽  
Stephany Y. Xu ◽  
Shangyu Zhang

In this paper, the efficacy of porous ceiling treatment to reduce noise levels inside a typical tunnel is examined with a validated modal-based prediction method. It is found that, for a point source, the effect of increasing porous ceiling thickness on sound pressure level (SPL) attenuation along the tunnel is limited. A porous ceiling with thickness of 0.3 m is comparable with an infinite porous ceiling in middle and high frequency ranges. For a line source, the effect of ceiling thickness on SPL reduc- tion in this typical tunnel is limited. Sound pressure level reduction of 4 dBA is real- ized with 0.3 m porous ceiling, which is the same as infinite ceiling and only 1 dBA smaller than the theoretically optimized value. These results suggest that, in the event only ceiling treatment is considered, 0.3 m porous material is sufficient for noise re- duction in this typical tunnel.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012169
Author(s):  
G E Puglisi ◽  
G Spigliantini ◽  
N Oggiani ◽  
L Shtrepi ◽  
M C Masoero ◽  
...  

Abstract The EN 16798-1 specifies the requirements to assess indoor environmental quality (IEQ) considering thermal, air quality, lighting and acoustics domains. A drawback of the standard is that it is based on an objective evaluation approach and does not account for the subjective perception. Also, the standard does not assess global IEQ nor comfort as a single index for the interaction of all the domains. This work tests the metrics proposed in the standard relating them to the occupants’ evaluations. An in-field monitoring campaign was performed in the ARPA headquarter in Aosta (Italy), acquiring quantities to be correlated with the subjective perception of IEQ gained through surveys. An insight on the possible approach to communicate IEQ and comfort feedbacks to the occupants was investigated to promote their awareness. Preliminary results show that the occupants’ perception can be predicted by adopting the approach proposed in EN 16798-1 in the case of thermal comfort, but limitations emerge about air quality, lighting and acoustics. Such result allows investigating how the environmental variables considered by the standard (e.g., the maximum sound pressure level or the maximum CO2 concentration) can be adopted as predictors of comfort, thus how new parameters and assessment methods should be introduced.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032055
Author(s):  
Radka Kantová

Abstract Prolonged, repeated or very intense noise exposure can damage human health. To reduce any dangerous effects of noise on human health, policies and restrictions are enshrined in national law and legislative regulations. In the Czech Republic, this issue is subject to the Ministry of Health. In other states it can be the Ministry of Health or more often the Ministry of the Environment. The protection of human health against noise and vibration is enshrined in Act No. 258/2000 Coll., on Protection of Public Health, specifically in şş 30-34 of this Act. Other restrictions are described in Act No. 309/2006 Coll., which regulates other requirements for safety and health protection at work in labour relations and on ensuring safety and health protection in activities or the provision of services outside of labour relations. Furthermore, hygienic limits for workplaces, protected indoor areas of buildings and protected outdoor areas are set in the new Regulation of the Government of the Czech Republic, No. 272/2011 Coll. as amended. This Regulation also sets limits for construction noise. They set limitations in so-called outdoor protected areas and the so-called outdoor protected areas of buildings. The hygienic limit of the equivalent sound pressure level A for noise from construction activities is set here by adding a correction of 5dB or 15dB according to the type of protected space to the basic value of the equivalent sound pressure level A 50dB. This limit must be adhered to. For buildings nearby, the term „protected facades“ is used, i.e. „protected façades“ include the nearest buildings that are inhabited and their occupants could be exposed to noise for a long period of time. We can measure the intensity of noise in these places if we have a "sound level meter". Predicting the intensity of noise and its longevity for future construction is more challenging. The computational evaluation of the noise load of the outdoor area of the monitored territory is based on the recommended theoretical acoustic relations for the transmission of sound from stationary noise sources according to ČSN ISO 9613/1-2. One of the possibilities of calculating the intensity of noise is the application of software programmes used for determining traffic noise, which, in contrast to construction noise, is handled very carefully and predicted in detail during the construction of transport infrastructure. Because here are the values and methodologies for the calculation of noise indicators set correctly and in detail, it is possible to use them also, provided that we work well with the background and input data. The calculation indicators are the values of the equivalent sound pressure level falling in front of the façade, on which we determine various measuring points. If the noise sources and acoustically significant elements are entered correctly, we obtain both correct values and also the possibility of displaying a map of the area with colour isophone bands, which expresses the level of noise in the construction site and its surroundings.


Author(s):  
Fuyou He ◽  
li jiawei_hust ◽  
Chuan Li ◽  
Pengyu Wang ◽  
Zutao Wang ◽  
...  

Abstract As an efficient approach to improve the visibility, defogging technology is essential for the operation of ports and airports. This paper proposes a new and hybrid defogging technology, i.e. electric–acoustic defogging method. Specifically, the droplets are charged by corona discharge, which is beneficial to overcome the hydrodynamic interaction force to improve the droplet collision efficiency. Meanwhile, sound waves (especially acoustic turbulence) promote the relative movement of droplets to increase the collision probability. In this study, the effects of acoustic frequency ( f ), sound pressure level (SPL), and voltage (V) on the droplet growth ratio were studied by orthogonal design analysis. The results of difference analysis and multi-factor variance analysis show that frequency and sound pressure level are the dominant factors that affect the collision of droplets, and the effect of voltage is relatively weak. And f = 400 Hz, SPL = 132 dB, and V = -7.2 kV are the optimal parameters in our experiment. In addition, we further studied the impact of single factor on droplet growth ratio. The results show that there is an optimal frequency of 400 Hz. That is, the impact of frequency is non-linear. The droplet growth ratio increases with sound pressure level and voltage level. The new technology proposed in this paper can provide a new approach for defogging in open space.


Acoustics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 642-666
Author(s):  
Ahmad Nayan ◽  
Tai Yan Kam

A new vibro-acoustic method is presented to analyze the sound radiation behavior of orthotropic panel-form sound radiators using strip-type exciters to exert line loads to the panels for sound radiation. The simple first-order shear deformation theory together with the Ritz method is used to formulate the proposed method that makes the vibro-acoustic analysis of elastically restrained stiffened orthotropic plates more computationally efficient than the methods formulated on the basis of the other shear deformation theories. An elastically restrained orthotropic plate consisting of two parallel strip-type exciters was tested to measure the experimental sound pressure level curve for validating the effectiveness and accuracy of the proposed method. The resonance characteristics (natural frequency and mode shape) detrimental to sound radiation are identified in the vibro-acoustic analysis of the orthotropic plate. For any orthotropic sound radiation plate, based on the detrimental mode shapes, a practical procedure is presented to design the line load locations on the plate to suppress the major sound pressure level dips for enhancing the smoothness of the plate sound pressure level curve. For illustration, the sound radiation enhancement of orthotropic plates with different fiber orientations for aspect ratios equal to 3, 2, and 1 subjected to one or two line loads is conducted using the proposed procedure. The results for the cases with two line loads perpendicular to the fiber direction and located at the nodal lines of the major detrimental mode shape may find applications in designing orthotropic panel-form speakers with relatively smooth sound pressure level curves.


Sign in / Sign up

Export Citation Format

Share Document