scholarly journals Layout Design of Stiffened Plates for Large-Scale Box Structure under Moving Loads Based on Topology Optimization

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhaohua Wang ◽  
Chenglong Yang ◽  
Xiaopeng Xu ◽  
Dezhuang Song ◽  
Fenghe Wu

As the main load-bearing structure of heavy machine tools, cranes, and other high-end equipment, the large-scale box structures usually bear moving loads, and the results of direct topology optimization usually have some problems: the load transfer skeleton is difficult to identify and all working conditions are difficult to consider comprehensively. In this paper, a layout design method of stiffened plates for the large-scale box structures under moving loads based on multiworking-condition topology optimization is proposed. Based on the equivalent principle of force, the box structures are simplified into the main bending functional section, main torsional functional section, and auxiliary functional section by the magnitude of loads and moments, which can reduce the structural dimension and complexity in topology optimization. Then, the moving loads are simplified to some multiple position loads, and the comprehensive evaluation function is constructed by the compromise programming method. The mathematical model of multiworking-condition topology optimization is established to optimize the functional sections. Taking a crossbeam of superheavy turning and milling machining center as an example, optimization results show that the stiffness and strength of the crossbeam are increased by 17.39% and 19.9%, respectively, while the weight is reduced by 12.57%. It shows that the method proposed in this paper has better practicability and effectiveness for large-scale box structures.

Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


2016 ◽  
Vol 33 (2) ◽  
Author(s):  
Fatih Mehmet ÖZKAL ◽  
Habib UYSAL

Purpose Compared with conventional design methods, strut-and-tie modeling is a more suitable and even a superior method for the reinforcement layout design of structural members with uncommon geometrical shapes and/or regions essentially subject to shear effects. Because the determination of the optimum strut-and-tie model for each of the members is an important task, the implementation of a topology optimization method could be useful before the detailing stage. Design/methodology/approach Optimum reinforcement layout of a concrete frame was designed by an integrated approach, which consists of the topology optimization and strut-and-tie modeling methods. Subsequently, an experimental comparison of the new model with the conventional model was performed based on their structural behaviors. Findings Depending on the experimental results, it was concluded that the new integrated design method presents more successful results than does the conventional method for the design of reinforced concrete (RC) members. Originality/value The preference of the new method will facilitate the design process by eliminating the experience required of design engineers.


2014 ◽  
Vol 633-634 ◽  
pp. 1273-1276
Author(s):  
Jian Bin Du ◽  
Rui Zhen Yang

A novel design method based on layout evolution of the periodic micro unit cell of the metamaterial is presented for improvement of the mechanical behavior of the composite structure. The macro properties of the metamaterial depend strongly on its microscopic layout, and hereby may possibly be improved by microstructural design. Topology optimization model and the solution method based on inverse homogenization process are developed to find the best layout of the microstructure. The proposed method may be applied to improve the static and vibro-acoustic behavior of the structure, which is validated by several numerical examples.


2018 ◽  
pp. 172-182 ◽  
Author(s):  
Shengmin CAO

This paper mainly studies the application of intelligent lighting control system in different sports events in large sports competition venues. We take the Xiantao Stadium, a large­scale sports competition venue in Zaozhuang City, Shandong Province as an example, to study its intelligent lighting control system. In this paper, the PID (proportion – integral – derivative) incremental control model and the Karatsuba multiplication model are used, and the intelligent lighting control system is designed and implemented by multi­level fuzzy comprehensive evaluation model. Finally, the paper evaluates the actual effect of the intelligent lighting control system. The research shows that the intelligent lighting control system designed in this paper can accurately control the lighting of different sports in large stadiums. The research in this paper has important practical significance for the planning and design of large­scale sports competition venues.


2021 ◽  
Vol 11 (7) ◽  
pp. 3165
Author(s):  
Zhigang Wang ◽  
Yu Yang

A seamless and smooth morphing leading edge has remarkable potential for noise abatement and drag reduction of civil aircraft. Variable-stiffness compliant skin based on tailored composite laminate is a concept with great potential for morphing leading edge, but the currently proposed methods have difficulty in taking the manufacturing constraints or layup sequence into account during the optimization process. This paper proposes an innovative two-step design method for a variable-stiffness compliant skin of a morphing leading edge, which includes layup optimization and layup adjustment. The combination of these two steps can not only improve the deformation accuracy of the final profile of the compliant skin but also easily and effectively determine the layup sequence of the composite layup. With the design framework, an optimization model is created for a variable-stiffness compliant skin, and an adjustment method for its layups is presented. Finally, the deformed profiles between the directly optimized layups and the adjusted ones are compared to verify its morphing ability and accuracy. The final results demonstrate that the obtained deforming ability and accuracy are suitable for a large-scale aircraft wing.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3484
Author(s):  
Tai-Lin Chang ◽  
Shun-Feng Tsai ◽  
Chun-Lung Chen

Since the affirming of global warming, most wind energy projects have focused on the large-scale Horizontal Axis Wind Turbines (HAWTs). In recent years, the fast-growing wind energy sector and the demand for smarter grids have led to the use of Vertical Axis Wind Turbines (VAWTs) for decentralized energy generation systems, both in urban and remote rural areas. The goals of this study are to improve the Savonius-type VAWT’s efficiency and oscillation. The main concept is to redesign a Novel Blade profile using the Taguchi Robust Design Method and the ANSYS-Fluent simulation package. The convex contour of the blade faces against the wind, creating sufficient lift force and minimizing drag force; the concave contour faces up to the wind, improving or maintaining the drag force. The result is that the Novel Blade improves blade performance by 65% over the Savonius type at the best angular position. In addition, it decreases the oscillation and noise accordingly. This study achieved its two goals.


2021 ◽  
Vol 157-158 ◽  
pp. 103006
Author(s):  
David Herrero-Pérez ◽  
Pedro J. Martínez Castejón

Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Hossam A. Gabbar ◽  
Ahmed M. Othman ◽  
Muhammad R. Abdussami

The evolving global landscape for electrical distribution and use created a need area for energy storage systems (ESS), making them among the fastest growing electrical power system products. A key element in any energy storage system is the capability to monitor, control, and optimize performance of an individual or multiple battery modules in an energy storage system and the ability to control the disconnection of the module(s) from the system in the event of abnormal conditions. This management scheme is known as “battery management system (BMS)”, which is one of the essential units in electrical equipment. BMS reacts with external events, as well with as an internal event. It is used to improve the battery performance with proper safety measures within a system. Therefore, a safe BMS is the prerequisite for operating an electrical system. This report analyzes the details of BMS for electric transportation and large-scale (stationary) energy storage. The analysis includes different aspects of BMS covering testing, component, functionalities, topology, operation, architecture, and BMS safety aspects. Additionally, current related standards and codes related to BMS are also reviewed. The report investigates BMS safety aspects, battery technology, regulation needs, and offer recommendations. It further studies current gaps in respect to the safety requirements and performance requirements of BMS by focusing mainly on the electric transportation and stationary application. The report further provides a framework for developing a new standard on BMS, especially on BMS safety and operational risk. In conclusion, four main areas of (1) BMS construction, (2) Operation Parameters, (3) BMS Integration, and (4) Installation for improvement of BMS safety and performance are identified, and detailed recommendations were provided for each area. It is recommended that a technical review of the BMS be performed for transportation electrification and large-scale (stationary) applications. A comprehensive evaluation of the components, architectures, and safety risks applicable to BMS operation is also presented.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yingfeng Zhao ◽  
Jianhua Liu ◽  
Jiangtao Ma ◽  
Linlin Wu

AbstractCurrent studies on cable harness layouts have mainly focused on cable harness route planning. However, the topological structure of a cable harness is also extremely complex, and the branch structure of the cable harness can affect the route of the cable harness layout. The topological structure design of the cable harness is a key to such a layout. In this paper, a novel multi-branch cable harness layout design method is presented, which unites the probabilistic roadmap method (PRM) and the genetic algorithm. First, the engineering constraints of the cable harness layout are presented. An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described. In addition, a new genetic algorithm is proposed, and the algorithm structure of which is redesigned. In addition, the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness. A prototype system of a cable harness layout design was developed based on the method described in this study, and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method. In summary, the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.


Sign in / Sign up

Export Citation Format

Share Document