Determination of sample size for input variables in RBDO through bi-objective confidence-based design optimization under input model uncertainty

2019 ◽  
Vol 61 (1) ◽  
pp. 253-266 ◽  
Author(s):  
Yongsu Jung ◽  
Hyunkyoo Cho ◽  
Zunyi Duan ◽  
Ikjin Lee
Author(s):  
Yongsu Jung ◽  
Hyunkyoo Cho ◽  
Zunyi Duan ◽  
Ikjin Lee

Abstract The confidence of reliability indicates that reliability has randomness induced by any epistemic uncertainties, and these uncertainties can be reduced and manipulated by additional knowledge. In this paper, the uncertainty of input statistical models is mainly treated in the context of confidence-based design optimization (CBDO). Thus, the objective of this paper is to determine the optimal number of data for reliability-based design optimization (RBDO) under input model uncertainty. The uncertainty of input statistical models due to insufficient data is frequent in practical applications since collecting and testing samples of random variables requires engineering efforts. There are two ways to increase the confidence of reliability to be satisfied, which are shifting design vector and supplementing input data. The purpose of this research is to find balanced optimum accounting for a trade-off between two operations since both operations lead to the growth of overall cost. Therefore, it is necessary to optimally distribute the resources to two costs which are denoted as the operating cost of design vector and the development cost of acquiring new data. In this study, two types of costs are integrated as a bi-objective function, satisfying the probabilistic constraint for the confidence of reliability. The number of data is regarded as design variable to be optimized, and stochastic sensitivity analysis of reliability with respect to the number of data is developed. The proposed bi-objective CBDO can determine the optimal number of input data based on the current dataset. Then, the designers decide the additional number of tests for collecting input data according to the optimum of bi-objective CBDO to minimize the overall cost.


1966 ◽  
Vol 49 (3) ◽  
pp. 511-515 ◽  
Author(s):  
R W Henningson

Abstract Bath level, sample temperature, rate of stirring, degree of supercooling, sample size, sample isolation, and refreezing of the sample were the variables in the thermistor cryoscopic method for the determination of the freezing point value of milk chosen for study. Freezing point values were determined for two samples of milk and two secondary salt standards utilizing eight combinations of the seven variables in two test patterns. The freezing point value of the salt standards ranged from –0.413 to –0.433°C and from –0.431 to –0.642°C. The freezing point values of the milk samples ranged from –0.502 to –0.544°C and from –0.518 to –0.550°C. Statistical analysis of the data showed that sample isolation was a poor procedure and that other variables produced changes in the freezing point value ranging from 0.001 to 0.011°C. It is recommended that specific directions be instituted for the thermistor cryoscopic method, 15.040–15.041, and that the method be subjected to a collaborative study.


2000 ◽  
Vol 66 (9) ◽  
pp. 4149-4151 ◽  
Author(s):  
Wan-Ling Tsai ◽  
Cynthia E. Miller ◽  
Edward R. Richter

ABSTRACT Both 25-g single-size ground beef samples and 375-g composite ground beef samples were tested by a method combining an immunomagnetic separation (IMS) technique with a sandwich enzyme-linked immunosorbent assay (ELISA) system (IMS-ELISA). The results demonstrated that IMS-ELISA could detect the target, Escherichia coliO157:H7, at the level of 10−1 CFU/g of sample in either the 25- or 375-g sample size.


2016 ◽  
Vol 17 ◽  
pp. 384-390 ◽  
Author(s):  
V. Varsha ◽  
Gaurav H. Pandey ◽  
K. Ramachandra Rao ◽  
B.K. Bindhu

Sign in / Sign up

Export Citation Format

Share Document