Variable-fidelity probability of improvement method for efficient global optimization of expensive black-box problems

2020 ◽  
Vol 62 (6) ◽  
pp. 3021-3052 ◽  
Author(s):  
Xiongfeng Ruan ◽  
Ping Jiang ◽  
Qi Zhou ◽  
Jiexiang Hu ◽  
Leshi Shu
Author(s):  
Liqun Wang ◽  
Songqing Shan ◽  
G. Gary Wang

The presence of black-box functions in engineering design, which are usually computation-intensive, demands efficient global optimization methods. This work proposes a new global optimization method for black-box functions. The global optimization method is based on a novel mode-pursuing sampling (MPS) method which systematically generates more sample points in the neighborhood of the function mode while statistically covers the entire search space. Quadratic regression is performed to detect the region containing the global optimum. The sampling and detection process iterates until the global optimum is obtained. Through intensive testing, this method is found to be effective, efficient, robust, and applicable to both continuous and discontinuous functions. It supports simultaneous computation and applies to both unconstrained and constrained optimization problems. Because it does not call any existing global optimization tool, it can be used as a standalone global optimization method for inexpensive problems as well. Limitation of the method is also identified and discussed.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
George H. Cheng ◽  
Adel Younis ◽  
Kambiz Haji Hajikolaei ◽  
G. Gary Wang

Mode pursuing sampling (MPS) was developed as a global optimization algorithm for design optimization problems involving expensive black box functions. MPS has been found to be effective and efficient for design problems of low dimensionality, i.e., the number of design variables is less than 10. This work integrates the concept of trust regions into the MPS framework to create a new algorithm, trust region based mode pursuing sampling (TRMPS2), with the aim of dramatically improving performance and efficiency for high dimensional problems. TRMPS2 is benchmarked against genetic algorithm (GA), dividing rectangles (DIRECT), efficient global optimization (EGO), and MPS using a suite of standard test problems and an engineering design problem. The results show that TRMPS2 performs better on average than GA, DIRECT, EGO, and MPS for high dimensional, expensive, and black box (HEB) problems.


Sign in / Sign up

Export Citation Format

Share Document