Effect of process parameters on friction stir welding of aluminum alloy 2219-T87

2010 ◽  
Vol 50 (9-12) ◽  
pp. 941-952 ◽  
Author(s):  
Kanwer S. Arora ◽  
Sunil Pandey ◽  
Michael Schaper ◽  
Rajneesh Kumar
2017 ◽  
Vol 863 ◽  
pp. 3-7
Author(s):  
Koo Kil No ◽  
Joon Tae Yoo ◽  
Jong Hoon Yoon ◽  
Ho Sung Lee

Aluminum alloy 2219 is widely used in aerospace applications since it has a unique combination of good weldability and high specific strength. Furthermore, it can provide a high strength after heat treatment with superior properties in cryogenic environment so they have been widely used for cryogenic fuel tank of space launch vehicles. It is known that solid state welding like friction stir welding can improve the joint properties of this alloy. Friction stir welding is a solid state welding technology which two materials are welded together by the frictional heat due to the rotation of the tool. In this study, friction stir welding was performed on aluminum alloy 2219 sheets. The range of welding parameter is four rotation speeds from 350 to 800 rpm and six travel speeds from 120 to 420 mm/min. The results include the microstructural change after friction stir welding. The microstructure was characterized and material in the stirred zone experience sufficient deformation and heat input which cause the complete dynamic recrystallization. The present work represents the strength at each process condition and the optimum friction stir welding process parameters. The optimum weld efficiency obtained in this study was 76.5 %.


Author(s):  
Rajat Gupta ◽  
Kamal Kumar ◽  
Neeraj Sharma

This chapter presents the friction stir welding (FSW) of aluminum alloy AA-5083-O using vertical milling machine. In present FSW experimentation, effects of different process parameter namely tool rotation speed, welding speed, tool geometry, and tool shoulder diameter have been determined on welding quality of two pieces of AA-5083-O using response surface methodology (RSM). The optimal sets of process parameters have been determined for weld quality characteristics namely tensile strength (UTS) and percentage elongation (%EL). In present experimentations, a specially designed tool made of high carbon steel with different shoulder diameters (15mm, 17.5mm, and 20 mm) having constant pin length (6 mm) were used for FSW of two pieces of aluminum alloy. The ANOVA and pooled ANOVA were used to study the effect of FSW parameters on UTS and %EL. Multi response optimization has been carried out using desirability function in conjunction with RSM to obtain the optimal setting of process parameters for higher UTS and lower %EL.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1480
Author(s):  
Assefa Asmare ◽  
Raheem Al-Sabur ◽  
Eyob Messele

The use of aluminum alloys, nowadays, is swiftly growing from the prerequisite of producing higher strength to weight ratio. Lightweight components are crucial interest in most manufacturing sectors, especially in transportation, aviation, maritime, automotive, and others. Traditional available joining methods have an adverse effect on joining these lightweight engineering materials, increasing needs for new environmentally friendly joining methods. Hence, friction stir welding (FSW) is introduced. Friction stir welding is a relatively new welding process that can produce high-quality weld joints with a lightweight and low joining cost with no waste. This paper endeavors to deals with optimizing process parameters for quality criteria on tensile and hardness strengths. Samples were taken from a 5 mm 6061-T6 aluminum alloy sheet with butt joint configuration. Controlled process parameters tool profile, rotational speed and transverse speed were utilized. The process parameters are optimized making use of the combination of Grey relation analysis method and L9 orthogonal array. Mechanical properties of the weld joints are examined through tensile, hardness, and liquid penetrant tests at room temperature. From this research, rotational speed and traverse speed become significant parameters at a 99% confidence interval, and the joint efficiency reached 91.3%.


2016 ◽  
Vol 29 (9) ◽  
pp. 869-883 ◽  
Author(s):  
Saad B. Aziz ◽  
Mohammad W. Dewan ◽  
Daniel J. Huggett ◽  
Muhammad A. Wahab ◽  
Ayman M. Okeil ◽  
...  

Author(s):  
Mohd Atif Wahid ◽  
Zahid A Khan ◽  
Arshad Noor Siddiquee ◽  
Rohit Shandley ◽  
Nidhi Sharma

In friction stir welding of heat treatable aluminum alloys, the thermal cycles developed during the joining process result in softening of the joints which adversely affect their mechanical properties. Underwater friction stir welding can be a process of choice to overcome this problem due to low peak temperature and short dwell time involved during the process. Consequently, this article presents a study pertaining to the underwater friction stir welding of aluminum alloy 6082-T6 with an aim to develop a mathematical model to optimize the underwater friction stir welding process parameters for obtaining maximum tensile strength. The results of the study reveal that the tool shoulder diameter (d), tool rotational speed (ω), welding speed (v), and second-order term of rotational speed, that is, ω2, significantly affect the tensile strength of the joint. The maximum tensile strength of 241 MPa which is indeed 79% of the base metal strength and 10.7% higher than that of conventional (air) friction stir welding joint was achieved at an optimal setting of the underwater friction stir welding parameters, that is, tool rotational speed of 900 r/min, the welding speed of 80 mm/min, and a tool shoulder of 17 mm. The article also presents the results of temperature variation, the macrostructural and microstructural investigations, microhardness, and fractography of the joint obtained at the optimal setting for underwater friction stir welded (UFSWed) joint.


Sign in / Sign up

Export Citation Format

Share Document