6063 aluminum alloy
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 43)

H-INDEX

15
(FIVE YEARS 5)

2021 ◽  
Vol 8 ◽  
Author(s):  
Wen Zhu ◽  
Furui Chen ◽  
Youbin Luo ◽  
Zhijun Su ◽  
Wenfang Li ◽  
...  

In this study, a vanadium (V) and tannic acid-based composite conversion coating (VTACC) was prepared on 6063 aluminum alloy (AA6063) to increase its corrosion resistance. The surface morphology and compositions of the VTACCs were characterized using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the coatings was investigated by linear polarization and electrochemical impedance spectra (EIS). The self-healing ability of the coating was detected by SEM, EDS, and scanning vibrating electrode technique (SVET) measurements. The coating mainly consisted of metal oxides, including Al2O3, VO2, V2O3, and V2O5, and metal organic complexes (Al and V-complexes). The electrochemical measurement results indicated that the best corrosion resistance of VTACC was acquired when the treatment time was 12 min. Furthermore, because a new coating with vanadium rich oxide was developed on the scratch area, artificial scratch VTACC surfaces were repaired after several days of immersion in 3.5-wt% NaCl solution.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7738
Author(s):  
Joanna Korzekwa ◽  
Marek Bara ◽  
Sławomir Kaptacz

The article presents the results of an aluminum oxide layer doped with monolayer 2H tungsten disulphide (Al2O3/WS2) for applications in oil-free kinematic systems. The results concern the test carried out on the pneumatic actuator operational test stand, which is the actual pneumatic system with electromagnetic control. The cylinders of actuators are made of Ø 40 mm aluminum tube of EN-AW-6063 aluminum alloy which is used in the manufacture of commercial air cylinder actuators. The inner surfaces of the cylinder surfaces were covered with an Al2O3/WS2 oxide layer obtained by anodic oxidation in a three-component electrolyte and in the same electrolyte with the addition of tungsten disulfide 2H-WS2. The layers of Al2O3 and Al2O3/WS2 obtained on the inner surface of the pneumatic actuators were combined with a piston ring made of polytetrafluoroethylene with carbon (T5W) material and piston seals made of polyurethane (PU). The cooperation occurred in the conditions of technically dry friction. After the test was carried out, the scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) analysis of the surface of the cylinder bearing surfaces and piston seals of the pneumatic cylinders was performed. The analysis revealed the formation of a sliding film on the cylinder surface modified with tungsten disulfide, as well as on the surface of wiper seals. Based on the SEM/EDSM tests, it was also found that the modification of the Al2O3 layer with tungsten disulfide contributed to the formation of a sliding film with the presence of WS2 lubricant, which translated into smooth cylinder operation during 180 h of actuator operation. The cylinder with the unmodified layer showed irregular operation after approximately 70 h thereof.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1956
Author(s):  
Xinwei Wang ◽  
Jie Xu ◽  
Minghan Ding ◽  
Yanhu Zhang ◽  
Zhenlong Wang ◽  
...  

Bent micro-tubes have been frequently applied in electronics, medical devices and aerospace for heat transfer due to the increasing heat flux in high-density electric packages. Rotary-draw bending (RDB) is a commonly used process in forming tubes due to its versatility. However, the control of forming defects is the key problem in micro-tube bending in terms of wall thinning, cross-sectional deformation and wrinkling. In this paper, a three-dimensional (3D) finite-elements (FE) modeling of electrically-assisted (EA) RDB of 6063 aluminum alloy micro-tubes is developed with the implicit method in ABAQUS. The multi-field coupled behavior was simulated and analyzed during the EA RDB of micro-tubes. Several process parameters such as micro-tube diameter, bending radius, current density and electrical load path were selected to study their effects on the bending defects of the Al6063 micro-tubes. The simulated results showed that the cross-sectional distortion could be improved when electrical current mainly pass through the vicinity of the tangent point in the micro-tube RDB, and the cross-sectional distortion tended to decrease with the increases of current density and tube diameter, and the decreases of bending speed and radius. A trade-off should be made between the benefit and side effect due to electrical current since the risk of wall thinning and wrinkling may increase.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6584
Author(s):  
Shikang Li ◽  
Luoxing Li ◽  
Zhiwen Liu ◽  
Guan Wang

Extrusion experiments and 3D numerical modeling were conducted to investigate the dynamic recrystallization and welding quality of a 6063 aluminum alloy hollow square tube extruded by a porthole die at the ram speeds of 3 mm/s, 7 mm/s, 9 mm/s and 11 mm/s. The results showed that average grain size of hollow square tube extruded at the ram speed of 7 mm/s was the smallest. The profile extruded at the ram speed of 3 mm/s exhibited the highest expansion ratio. Dynamic recrystallization (DRX) fractions were highly variable at different ram speeds. DRX fractions in the matrix zones were higher than those in the welding zones, resulting in smaller grain sizes in the matrix zones. Mechanical properties in the welding zones and matrix zones was different. A local strain concentration would occurred during expansion, which would affect the welding quality. Finally, it was found that the uniform microstructure near the welding line would also affect the welding quality.


Author(s):  
Mahmoud Ebrahimi ◽  
Shokouh Attarilar ◽  
Hatice-Varol Özkavak ◽  
Ceren Gode

Expanding suitable severe plastic deformation processes seems essential to design lightweight wire-formed materials for emerging demands. In this regard, 6063 aluminum alloy in the form of wire was processed successfully by polyurethane rubber assisted-equal channel angular pressing up to 16 passes by route BC. It was found that significant improvement of hardness and strength is achieved at the initial passes due to the increment of material’s dislocations density which leads to the crystallite size decrease and lattice microstrain increase. Also, subsequent passes improve the mechanical properties with a gentle rate due to the saturation of dislocation strengthening. The fractography analysis indicated that the ductile fracture mode of the annealed aluminum decreases by imposing the ECAP process. It is related to the formation of cleavage and rive patterns and the reduction in the number and size of the dimples compared to the initial condition. Eventually, X-ray diffraction findings showed that by adding pass numbers, the isotropy degree of the aluminum sample enhances because of the lowest diffraction scattering.


2021 ◽  
Author(s):  
Yongda Liu ◽  
Jie Xu ◽  
Zhengwu Zhang ◽  
Gang Liu ◽  
Debin Shan ◽  
...  

Abstract Micro-extrusion process of miniature heat pipe with axial micro grooves is particularly difficult due to ultra-large extrusion ratio and complex cross-sectional shape. In this study, the shape control of a miniature heat pipe in 6063 aluminum alloy with boundary dimension of 5×4 mm has been successfully realized during micro-extrusion. Micro-extrusion process and microstructure evolution of the miniature heat pipe were investigated by the combination of finite element (FE) analysis with experiments. The results show that material flow deformation behavior during micro-extrusion is highly affected by size effect, and lower ram speed is conductive to forming integrity, dimension accuracy and surface quality of the heat pipe profile. The primary mechanism for micro-extrusion failure of micro-grooves is severely more uneven material flow between the micro rib and base region at higher ram speed, which is caused by size effect and results in shear deformation and even fractures of micro rib. Further research shows that, compared to the extrusion using as-cast billets, much coarser grains were obtained after micro-extrusion using as-extruded billets at an ultra-large extrusion ratio of 205. Besides that, the entirely different texture components after extrusion were obtained instead of the typical < 100 > //ED or < 111 > //ED fiber texture components. These atypical texture components can be regarded as texture deviating from ideal texture by a certain angle (15° or 20°) along φ axis or φ1 axis.


2021 ◽  
Vol 27 (S1) ◽  
pp. 3272-3275
Author(s):  
M.L. Camacho-Rios ◽  
C.G. Garay-Reyes ◽  
D. Lardizabal-Gutiérrez ◽  
I. Estrada-Guel ◽  
R. Perez-Bustamante ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document