Towards robotic assembly: collision detection between each part of the parallel groove clamp

Author(s):  
Xin Shi ◽  
Li Tian
Author(s):  
Jian Liu ◽  
J. P. Sadler

Abstract A flexible robotic assembly cell is described, and some of the research activities involving the cell and robot applications in manufacturing environments are presented. This research relies heavily on computer simulation. Assembly cell computer modeling, cell calibration, robot collision detection, and off-line programming are described in this paper.


Author(s):  
Varun Kumar ◽  
Lakshya Gaur ◽  
Arvind Rehalia

In this paper the authors have explained the development of robotic vehicle prepared by them, which operates autonomously and is not controlled by the users, except for selection of modes. The different modes of the automated vehicle are line following, object following and object avoidance with alternate trajectory determination. The complete robotic assembly is mounted on a chassis comprising of Arduino Uno, Servo motors, HC-SRO4 (Ultrasonic sensor), DC motors (Geared), L293D Motor Driver, IR proximity sensors, Voltage Regulator along with castor wheel and two normal wheels.


ROBOT ◽  
2011 ◽  
Vol 33 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Yuntian HUANG ◽  
Weidong CHEN ◽  
Yixiang SUN

Author(s):  
Juan Martinez-Moritz ◽  
Ismael Rodriguez ◽  
Korbinian Nottensteiner ◽  
Jean-Pascal Lutze ◽  
Peter Lehner ◽  
...  

Author(s):  
Sebastian Krügel ◽  
Matthias Uhl ◽  
Bryn Balcombe

AbstractWe address the considerations of the European Commission Expert Group on the ethics of connected and automated vehicles regarding data provision in the event of collisions. While human drivers’ appropriate post-collision behavior is clearly defined, regulations for automated driving do not provide for collision detection. We agree it is important to systematically incorporate citizens’ intuitions into the discourse on the ethics of automated vehicles. Therefore, we investigate whether people expect automated vehicles to behave like humans after an accident, even if this behavior does not directly affect the consequences of the accident. We find that appropriate post-collision behavior substantially influences people’s evaluation of the underlying crash scenario. Moreover, people clearly think that automated vehicles can and should record the accident, stop at the site, and call the police. They are even willing to pay for technological features that enable post-collision behavior. Our study might begin a research program on post-collision behavior, enriching the empirically informed study of automated driving ethics that so far exclusively focuses on pre-collision behavior.


Sign in / Sign up

Export Citation Format

Share Document