scholarly journals Numerical investigation of detonation initiation by a focusing shock wave

Shock Waves ◽  
2020 ◽  
Author(s):  
S. Bengoechea ◽  
J. Reiss ◽  
M. Lemke ◽  
J. Sesterhenn

Abstract This work presents a numerical study of detonation initiation by means of a focusing shock wave. The investigated geometry is a part of a pulsed detonation combustion chamber, consisting of a circular pipe in which the flow is obstructed by a single convergent–divergent axisymmetric nozzle. This obstacle acts as a focusing device for an incoming shock wave, serving as a low-energy detonation initiator. The chamber is filled with stoichiometric premixed hydrogen-enriched air. The simulation uses a one-step chemical model with variable parameters optimized by the adjoint approach in terms of the induction time $$\tau _{\text {c}}$$ τ c . The model reproduces $$\tau _{\text {c}}$$ τ c of a complex kinetics model in the range of pressures and temperatures appearing at the focusing point. The results give a comprehensive description of the shock-induced detonation initiation, which is the mechanism for the deflagration-to-detonation transition in this type of configurations. Potential geometry design improvements for technical applications are discussed. The first attempt to parameterize the transition process is also undertaken.

Shock Waves ◽  
2021 ◽  
Author(s):  
S. Bengoechea ◽  
J. Reiss ◽  
M. Lemke ◽  
J. Sesterhenn

AbstractAn optimisation study of a shock-wave-focusing geometry is presented in this work. The configuration serves as a reliable and deterministic detonation initiator in a pulsed detonation engine. The combustion chamber consists of a circular pipe with one convergent–divergent axisymmetric nozzle, acting as a focusing device for an incoming shock wave. Geometrical changes are proposed to reduce the minimum shock wave strength necessary for a successful detonation initiation. For that purpose, the adjoint approach is applied. The sensitivity of the initiation to flow variations delivered by this method is used to reshape the obstacle’s form. The thermodynamics is described by a higher-order temperature-dependent polynomial, avoiding the large errors of the constant adiabatic exponent assumption. The chemical reaction of stoichiometric premixed hydrogen-air is modelled by means of a one-step kinetics with a variable pre-exponential factor. This factor is adapted to reproduce the induction time of a complex kinetics model. The optimisation results in a 5% decrease of the incident shock wave threshold for the successful detonation initiation.


2015 ◽  
Vol 65 (4) ◽  
pp. 265
Author(s):  
P. Srihari ◽  
M.A. Mallesh ◽  
G. Sai Krishna Prasad ◽  
B.V.N. Charyulu ◽  
D.N. Reddy

<p>This paper presents an insight for the study of transient, compressible, intermittent pulsed detonation engine with one-step overall reaction model to reduce the computational complexity in detonation simulations. Investigations are done on flow field conditions developing inside the tube with the usage of irreversible one-step chemical reactions for detonations. In the present simulations 1-D and 2-D axisymmetric tubes are considered for the investigation. The flow conditions inside the detonation tube are estimated as a function of time and distance. Studies are also performed with different grid sizes which influence the prediction of Von-Neumann spike, CJ Pressure and detonation velocity. The simulation result from the single-cycle reaction model agrees well with the previous published literature of multi-step reaction models. The present studies shows that one-step overall reaction model is sufficient to predict the flow properties with reasonable accuracy. Finally, the results from the present study were compared and validated using NASA CEA.</p><p><strong>Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 265-271, DOI: http://dx.doi.org/10.14429/dsj.65.8730</strong></p>


2011 ◽  
Author(s):  
G. V. Shoev ◽  
Ye. A. Bondar ◽  
D. V. Khotyanovsky ◽  
A. N. Kudryavtsev ◽  
G. Mirshekari ◽  
...  

Shock Waves ◽  
2010 ◽  
Vol 20 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Z. M. Hu ◽  
H. S. Dou ◽  
B. C. Khoo

Sign in / Sign up

Export Citation Format

Share Document