axisymmetric nozzle
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 0)

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 441
Author(s):  
Emanuele Resta ◽  
Roberto Marsilio ◽  
Michele Ferlauto

The application of the Shock Vector Control (SVC) approach to an axysimmetric supersonic nozzle is studied numerically. SVC is a Fluidic Thrust Vectoring (FTV) strategy that is applied to fixed nozzles in order to realize jet-vectoring effects normally obtained by deflecting movable nozzles. In the SVC method, a secondary air flow injection close to the nozzle exit generates an asymmetry in the wall pressure distribution and side-loads on the nozzle, which are also lateral components of the thrust vector. SVC forcing of the axisymmetric nozzle generates fully three-dimensional flows with very complex structures that interact with the external flow. In the present work, the experimental data on a nozzle designed and tested for a supersonic cruise aircraft are used for validating the numerical tool at different flight Mach numbers and nozzle pressure ratios. Then, an optimal position for the slot is sought and the fully 3D flow at flight Mach number M∞=0.9 is investigated numerically for different values of the SVC forcing.


Author(s):  
Ju HUANG ◽  
Yongneng YANG ◽  
Qi LIU ◽  
Haibin YANG ◽  
Wei ZHANG

Mach 4.5 tests in a conventional trans-supersonic wind tunnel are often accompanied by the air liquefaction phenomenon, resulting in the low reliability of test data. The Mach 4.5 nozzle developed in a hypersonic wind tunnel is able to heat airflow and provide more accurate test data. At present, China does not have the capability to test the Mach 4.5 nozzle in the 0.5-meter hypersonic wind tunnel. This gap may be filled by developing the Mach 4.5 nozzle in the hypersonic wind tunnel. The axisymmetric nozzle profile was calculated by the inviscid flow calculation method, and the boundary layer was modified by the Sivells-Payne method. Then, the numerical simulation was carried out, and the simulation results prove that the nozzle profile thus calculated meets the design requirements of the Mach number. For its structural design, a three-section design method is adopted to ensure the continuity and smoothness of the inner surface so as to better calibrate the flow field. Standard model tests were also carried out. The test results show that the velocity field of the Mach 4.5 nozzle we developed meets technical requirements. The standard model test data provide data reliable support for the development of aircraft.


Shock Waves ◽  
2021 ◽  
Author(s):  
S. Bengoechea ◽  
J. Reiss ◽  
M. Lemke ◽  
J. Sesterhenn

AbstractAn optimisation study of a shock-wave-focusing geometry is presented in this work. The configuration serves as a reliable and deterministic detonation initiator in a pulsed detonation engine. The combustion chamber consists of a circular pipe with one convergent–divergent axisymmetric nozzle, acting as a focusing device for an incoming shock wave. Geometrical changes are proposed to reduce the minimum shock wave strength necessary for a successful detonation initiation. For that purpose, the adjoint approach is applied. The sensitivity of the initiation to flow variations delivered by this method is used to reshape the obstacle’s form. The thermodynamics is described by a higher-order temperature-dependent polynomial, avoiding the large errors of the constant adiabatic exponent assumption. The chemical reaction of stoichiometric premixed hydrogen-air is modelled by means of a one-step kinetics with a variable pre-exponential factor. This factor is adapted to reproduce the induction time of a complex kinetics model. The optimisation results in a 5% decrease of the incident shock wave threshold for the successful detonation initiation.


Author(s):  
Р.Р. Симашов ◽  
С.В. Чехранов

В работе приводятся обобщающие зависимости коэффициентов расхода сопловых аппаратов со сверхзвуковыми осесимметричными соплами в широком диапазоне изменения определяющих геометрических и режимных параметров. Предложена двухпараметрическая функция, учитывающая влияние расположения сопел в сопловом аппарате и степени конфузорности дозвуковой части осесимметричного сопла на коэффициент расхода. Показано слабое влияние на коэффициент расхода относительного радиуса закругления стенки в узкой части сопла и относительной длины дозвуковой части сопла в области их оптимальных значений определенных по минимуму потерь кинетической энергии. Переменные режимы работы сопла учитываются зависимостью относительного коэффициента расхода в функции от числа Рейнольдса в критическом сечении сопла. Полученные в работе эмпирические зависимости позволяют использовать их при моделировании переменных режимов и многорежимной оптимизации малорасходных турбин. The research presents generalizing dependences of mass flow rates in supersonic axisymmetric nozzle diaphragms n a wide range of variation of the governing geometric and operating parameters. A two-parameter function is proposed that takes into account the influence of the location of the nozzles in the nozzle apparatus and the degree of compression of the flow of the subsonic part of the nozzle on the mass flow rate. It is shown that the relative radius of rounding of the nozzle wall in the vicinity of the throat section and the relative length of the subsonic part of the nozzle in the region of their optimal values determined by the minimum of kinetic energy losses have a weak effect on the flow rate. Variable duties of nozzle operation are taken into account by the dependence of the relative flow rate as a function of the Reynolds number in the throat of the nozzle. The empirical dependencies obtained in this work make it possible to use them in modeling variable modes and multi-mode optimization of low-consumption turbines.


Shock Waves ◽  
2020 ◽  
Author(s):  
S. Bengoechea ◽  
J. Reiss ◽  
M. Lemke ◽  
J. Sesterhenn

Abstract This work presents a numerical study of detonation initiation by means of a focusing shock wave. The investigated geometry is a part of a pulsed detonation combustion chamber, consisting of a circular pipe in which the flow is obstructed by a single convergent–divergent axisymmetric nozzle. This obstacle acts as a focusing device for an incoming shock wave, serving as a low-energy detonation initiator. The chamber is filled with stoichiometric premixed hydrogen-enriched air. The simulation uses a one-step chemical model with variable parameters optimized by the adjoint approach in terms of the induction time $$\tau _{\text {c}}$$ τ c . The model reproduces $$\tau _{\text {c}}$$ τ c of a complex kinetics model in the range of pressures and temperatures appearing at the focusing point. The results give a comprehensive description of the shock-induced detonation initiation, which is the mechanism for the deflagration-to-detonation transition in this type of configurations. Potential geometry design improvements for technical applications are discussed. The first attempt to parameterize the transition process is also undertaken.


Author(s):  
A. M. Savel'ev ◽  
◽  
V. A. Savelieva ◽  
D. I. Babushenko ◽  
N. S. Titova ◽  
...  

A model of unsteady homogeneous nucleation of boron oxide vapors in chemically reacting mixtures is proposed. The nucleation of condensation nuclei in the model is considered as a bimolecular reaction of boron oxide molecules capture by clusters of boron oxide.


2020 ◽  
Author(s):  
Roberto Marsilio ◽  
Michele Ferlauto ◽  
M. Hadi Hamedi-Estakhrsar

2019 ◽  
Vol 11 (3) ◽  
pp. 457-468
Author(s):  
A. V. Babakov ◽  
A. V. Beloshitskiy ◽  
V. I. Gaydaenko ◽  
A. A. Dyadkin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document