pulsed detonation
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 35)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Michał Kawalec ◽  
Witold Perkowski ◽  
Borys Łukasik ◽  
Adam Bilar ◽  
Piotr Wolański

In the paper short information about advantages of introduction of detonation combustion to propulsion systems is briefly discussed and then research conducted at the Łukasiewicz-Institute of Aviation on development of the rotating detonation engines (RDE) is presented. Special attention is focused on continuously rotating detonation (CRD), since it offers significant advantages over pulsed detonation (PD). Basic aspects of initiation and stability of the CRD are discussed. Examples of applications of the CRD to gas turbine and rocket engines are presented and a combine cycle engine utilizing CRD are also evaluated. The world's first rocket flight powered by liquid propellant detonation engine is also described.


2021 ◽  
pp. 85-102
Author(s):  
Maikel Nadolski ◽  
Mohammad Rezay Haghdoost ◽  
Kilian Oberleithner ◽  
Rupert Klein

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5703
Author(s):  
Xiaolong Huang ◽  
Ning Li ◽  
Yang Kang

Fill fraction not only has a profound impact on the process of deflagration to detonation in pulsed detonation engine, but also affects the propulsion performance in both flight and ground tests. In this paper, a novel optical diagnostic method based on detonation exhaust radiation in visible and near-infrared region within 300–2600 nm is developed to determine the current working state in the gas–liquid two-phase pulsed detonation cycle. The results show that the radiation characteristic in each stage of detonation cycle is unique and can be a good indicator to infer the fill fraction. This is verified experimentally by comparison with the laser absorption spectroscopy method, which utilizes a DFB laser driven by ramp injection current to scan H2O transition of 1391.67 nm at a frequency of 20 kHz. Due to concentrated radiation intensity, time duration reaching accumulated radiant energy ratio of 50% in detonation status would be smaller than 1.2 ms, and detonation status would be easily distinguished from deflagration with this critical condition. In addition, the variation of important intermediates OH, CH, and C2 radicals during detonation combustion are obtained according to the analysis of detonation spectrum, which can also be proposed as a helpful optical diagnostics method for the combustion condition based on C radical concentration. The study demonstrates the feasibility of optical diagnostics based on radiation in visible and near-infrared regions, which could provide an alternative means to diagnose and improve pulsed detonation engine performance.


2021 ◽  
Vol 229 ◽  
pp. 111384
Author(s):  
Hardeo M. Chin ◽  
Daniel R. Cuppoletti ◽  
Timothy M. Ombrello ◽  
Kareem A. Ahmed ◽  
Keith D. Rein

Shock Waves ◽  
2021 ◽  
Author(s):  
S. Bengoechea ◽  
J. Reiss ◽  
M. Lemke ◽  
J. Sesterhenn

AbstractAn optimisation study of a shock-wave-focusing geometry is presented in this work. The configuration serves as a reliable and deterministic detonation initiator in a pulsed detonation engine. The combustion chamber consists of a circular pipe with one convergent–divergent axisymmetric nozzle, acting as a focusing device for an incoming shock wave. Geometrical changes are proposed to reduce the minimum shock wave strength necessary for a successful detonation initiation. For that purpose, the adjoint approach is applied. The sensitivity of the initiation to flow variations delivered by this method is used to reshape the obstacle’s form. The thermodynamics is described by a higher-order temperature-dependent polynomial, avoiding the large errors of the constant adiabatic exponent assumption. The chemical reaction of stoichiometric premixed hydrogen-air is modelled by means of a one-step kinetics with a variable pre-exponential factor. This factor is adapted to reproduce the induction time of a complex kinetics model. The optimisation results in a 5% decrease of the incident shock wave threshold for the successful detonation initiation.


Sign in / Sign up

Export Citation Format

Share Document