scholarly journals A Duality Theory for Non-convex Problems in the Calculus of Variations

2018 ◽  
Vol 229 (1) ◽  
pp. 361-415 ◽  
Author(s):  
Guy Bouchitté ◽  
Ilaria Fragalà
2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


1988 ◽  
Vol 40-40 (1-3) ◽  
pp. 213-221 ◽  
Author(s):  
Anthony V. Fiacco ◽  
Jerzy Kyparisis

2021 ◽  
Vol 36 ◽  
Author(s):  
Sergio Valcarcel Macua ◽  
Ian Davies ◽  
Aleksi Tukiainen ◽  
Enrique Munoz de Cote

Abstract We propose a fully distributed actor-critic architecture, named diffusion-distributed-actor-critic Diff-DAC, with application to multitask reinforcement learning (MRL). During the learning process, agents communicate their value and policy parameters to their neighbours, diffusing the information across a network of agents with no need for a central station. Each agent can only access data from its local task, but aims to learn a common policy that performs well for the whole set of tasks. The architecture is scalable, since the computational and communication cost per agent depends on the number of neighbours rather than the overall number of agents. We derive Diff-DAC from duality theory and provide novel insights into the actor-critic framework, showing that it is actually an instance of the dual-ascent method. We prove almost sure convergence of Diff-DAC to a common policy under general assumptions that hold even for deep neural network approximations. For more restrictive assumptions, we also prove that this common policy is a stationary point of an approximation of the original problem. Numerical results on multitask extensions of common continuous control benchmarks demonstrate that Diff-DAC stabilises learning and has a regularising effect that induces higher performance and better generalisation properties than previous architectures.


Sign in / Sign up

Export Citation Format

Share Document