Existence results for non convex problems of the calculus of variations

Author(s):  
Elvira Mascolo
2018 ◽  
Vol 229 (1) ◽  
pp. 361-415 ◽  
Author(s):  
Guy Bouchitté ◽  
Ilaria Fragalà

Author(s):  
Sonia Acinas ◽  
Fernando Mazzone

In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space \(W^1L^\Phi([0,T])\). We employ the direct method of calculus of variations and we consider  a potential  function \(F\) satisfying the inequality \(|\nabla F(t,x)|\leq b_1(t) \Phi_0'(|x|)+b_2(t)\), with \(b_1, b_2\in L^1\) and  certain \(N\)-functions \(\Phi_0\).


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


2020 ◽  
Vol 57 (3) ◽  
pp. 775-791
Author(s):  
David Dereudre ◽  
Thibaut Vasseur

AbstractWe provide a new proof of the existence of Gibbs point processes with infinite range interactions, based on the compactness of entropy levels. Our main existence theorem holds under two assumptions. The first one is the standard stability assumption, which means that the energy of any finite configuration is superlinear with respect to the number of points. The second assumption is the so-called intensity regularity, which controls the long range of the interaction via the intensity of the process. This assumption is new and introduced here since it is well adapted to the entropy approach. As a corollary of our main result we improve the existence results by Ruelle (1970) for pairwise interactions by relaxing the superstabilty assumption. Note that our setting is not reduced to pairwise interaction and can contain infinite-range multi-body counterparts.


1988 ◽  
Vol 40-40 (1-3) ◽  
pp. 213-221 ◽  
Author(s):  
Anthony V. Fiacco ◽  
Jerzy Kyparisis

Author(s):  
Shengli Xie

AbstractIn this paper we prove the existence and uniqueness of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay in Banach spaces. We generalize the existence theorem for integer order differential equations to the fractional order case. The results obtained here improve and generalize many known results.


2002 ◽  
Vol 9 (2) ◽  
pp. 287-294
Author(s):  
Tadeusz Jankowski

Abstract The method of lower and upper solutions combined with the monotone iterative technique is used for ordinary differential equations with nonlinear boundary conditions. Some existence results are formulated for such problems.


2020 ◽  
Vol 7 (1) ◽  
pp. 272-280
Author(s):  
Mamadou Abdoul Diop ◽  
Kora Hafiz Bete ◽  
Reine Kakpo ◽  
Carlos Ogouyandjou

AbstractIn this work, we present existence of mild solutions for partial integro-differential equations with state-dependent nonlocal local conditions. We assume that the linear part has a resolvent operator in the sense given by Grimmer. The existence of mild solutions is proved by means of Kuratowski’s measure of non-compactness and a generalized Darbo fixed point theorem in Fréchet space. Finally, an example is given for demonstration.


Sign in / Sign up

Export Citation Format

Share Document