On Global Infinite Energy Solutions¶to the Navier-Stokes Equations¶in Two Dimensions

2002 ◽  
Vol 161 (4) ◽  
pp. 307-337 ◽  
Author(s):  
Isabelle Gallagher ◽  
Fabrice Planchon
1983 ◽  
Vol 50 (2) ◽  
pp. 265-269
Author(s):  
D. Nixon

The perturbation theory for transonic flow is further developed for solutions of the Navier-Stokes equations in two dimensions or for experimental results. The strained coordinate technique is used to treat changes in location of any shock waves or large gradients.


1994 ◽  
Vol 116 (4) ◽  
pp. 202-208 ◽  
Author(s):  
K. Nakajima ◽  
Y. Kallinderis ◽  
I. Sibetheros ◽  
R. W. Miksad ◽  
K. Lambrakos

A numerical study of the nonlinear and random behavior of flow-induced forces on offshore structures and experimental verification of the results are presented. The numerical study is based on a finite-element method for the unsteady incompressible Navier-Stokes equations in two dimensions. The momentum equations combined with a pressure correction equation are solved employing fourth-order artificial dissipation with a nonstaggered grid, instead of the more commonly used staggered meshes. The solution is advanced in time with a combined explicit and implicit marching scheme. Emphasis is placed on study of reversing flows around a cylinder. Comparisons with experimental data evaluate accuracy and robustness of the method.


Sign in / Sign up

Export Citation Format

Share Document