offshore structures
Recently Published Documents


TOTAL DOCUMENTS

2752
(FIVE YEARS 445)

H-INDEX

37
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 663
Author(s):  
Byungmo Kim ◽  
Jaewon Oh ◽  
Cheonhong Min

The key to coping with global warming is reconstructing energy governance from carbon-based to sustainable resources. Offshore energy sources, such as offshore wind turbines, are promising alternatives. However, the abnormal climate is a potential threat to the safety of offshore structures because construction guidelines cannot embrace climate outliers. A cosine similarity-based maintenance strategy may be a possible solution for managing and mitigating these risks. However, a study reporting its application to an actual field structure has not yet been reported. Thus, as an initial study, this study investigated whether the technique is applicable or whether it has limitations in the real field using an actual example, the Gageocho Ocean Research Station. Consequently, it was found that damage can only be detected correctly if the damage states are very similar to the comparison target database. Therefore, the high accuracy of natural frequencies, including environmental effects, should be ensured. Specifically, damage scenarios must be carefully designed, and an alternative is to devise more efficient techniques that can compensate for the present procedure.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 559
Author(s):  
Moritz Braun ◽  
Alfons Dörner ◽  
Kane F. ter Veer ◽  
Tom Willems ◽  
Marc Seidel ◽  
...  

Fixed offshore wind turbines continue to be developed for high latitude areas where not only wind and wave loads need to be considered but also moving sea ice. Current rules and regulations for the design of fixed offshore structures in ice-covered waters do not adequately consider the effects of ice loading and its stochastic nature on the fatigue life of the structure. Ice crushing on such structures results in ice-induced vibrations, which can be represented by loading the structure using a variable-amplitude loading (VAL) sequence. Typical offshore load spectra are developed for wave and wind loading. Thus, a combined VAL spectrum is developed for wind, wave, and ice action. To this goal, numerical models are used to simulate the dynamic ice-, wind-, and wave-structure interaction. The stress time-history at an exemplarily selected critical point in an offshore wind energy monopile support structure is extracted from the model and translated into a VAL sequence, which can then be used as a loading sequence for the fatigue assessment or fatigue testing of welded joints of offshore wind turbine support structures. This study presents the approach to determine combined load spectra and standardized time series for wind, wave, and ice action.


2022 ◽  
pp. 136943322110651
Author(s):  
Mizan Ahmed ◽  
Qing Quan Liang ◽  
Ahmed Hamoda

Circular concrete-filled double-skin steel tubular (CFDST) columns with external stainless-steel are high-performance composite columns that have potential applications in civil construction including the construction of offshore structures, bridge piers, and transmission towers. Reflecting the limited research performed on investigating their mechanical performance, this study develops a computationally efficient fiber model to simulate the responses of short and slender beam-columns accounting for the influences of material and geometric nonlinearities. Accurate material laws of stainless steel, carbon steel, and confined concrete are implemented in the mathematical modeling scheme developed. A new solution algorithm based on the Regula-Falsi method is developed to maintain the equilibrium condition. The independent test results of short and slender CFDST beam-column are utilized to validate the accuracy of the theoretical solutions. The influences of various column parameters are studied on the load-axial strain [Formula: see text] curves, load-lateral deflection [Formula: see text] curves, column strength curves, and interaction curves of CFDST columns. Design formulas are suggested for designing short and beam-columns and validated against the numerical results. The computational model is found to be capable of simulating the responses of CFDST short and slender columns reasonably well. Parametric studies show that the consideration of the concrete confinement is important for the accuracy of the prediction of their mechanical responses. Furthermore, high-strength concrete can be utilized to enhance their load-carrying capacity particularly for short and intermediate slender beam-columns. The strengths of CFDST columns computed by the suggested design model are in good agreement with the test and numerical results.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 414
Author(s):  
Franck Schoefs ◽  
Thanh-Binh Tran

Marine growth is a known problem for oceanic infrastructure and has been shown to negatively impact the reliability of bottom-fixed or floating offshore structures submitted to fatigue or extreme loading. Among other effects, it has been shown to change drag forces by increasing member diameters and modifying the roughness. Bio-colonization being highly random, the objective of this paper is to show how one-site inspection data increases reliability by decreasing uncertainties. This can be introduced in a reliability-based inspection framework for optimizing inspection and maintenance (here, cleaning). The modeling and computation are illustrated through the reliability analysis of a monopile in the European Atlantic area subjected to marine growth and according to the plastic collapse limit state. Based on surveys of structures in the North Sea, long-term stochastic modeling (space and time) of the marine growth thickness is first suggested. A Dynamic Bayesian Network is then developed for reliability updating from the inspection data. Finally, several realistic (10–20 measurements) inspection strategies are compared in terms of reliability improvement and the accuracy of reliability assessment.


2022 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Xi Chen ◽  
Qi Zhang ◽  
Xiang Yuan Zheng ◽  
Yu Lei

In this study, a semi-analytical solution to the dynamic responses of a multilayered transversely isotropic poroelastic seabed under combined wave and current loadings is proposed based on the dynamic stiffness matrix method. This solution is first analytically validated with a single-layered and a two-layered isotropic seabed and then verified against previous experimental results. After that, parametric studies are carried out to probe the effects of the soil’s anisotropic characteristics and the effects of ocean waves and currents on the dynamic responses and the maximum liquefaction depth. The results show that the dynamic responses of a transversely isotropic seabed are more sensitive to the ratio of the soil’s vertical Young’s modulus to horizontal Young’s modulus (Ev/Eh) and the ratio of the vertical shear modulus to Ev (Gv/Ev) than to the vertical-to-horizontal ratio of the permeability coefficient (Kv/Kh). A lower degree of quasi-saturation, higher porosity, a shorter wave period, and a following current all result in a greater maximum liquefaction depth. Moreover, it is revealed that the maximum liquefaction depth of a transversely isotropic seabed would be underestimated under the isotropic assumption. Furthermore, unlike the behavior of an isotropic seabed, the transversely isotropic seabed tends to liquefy when fully saturated in nonlinear waves. This result supplements and reinforces the conclusions determined in previous studies. This work affirms that it is necessary for offshore engineering to consider the transversely isotropic characteristics of the seabed for bottom-fixed and subsea offshore structures.


Sign in / Sign up

Export Citation Format

Share Document