Perturbation Procedures for Nonlinear Viscous Flows

1983 ◽  
Vol 50 (2) ◽  
pp. 265-269
Author(s):  
D. Nixon

The perturbation theory for transonic flow is further developed for solutions of the Navier-Stokes equations in two dimensions or for experimental results. The strained coordinate technique is used to treat changes in location of any shock waves or large gradients.

Author(s):  
Kazuomi Yamamoto ◽  
Yoshimichi Tanida

A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and unsteady static pressure field predict a closed loop mechanism, in which the pressure disturbance, that is generated by the oscillation of boundary layer separation, propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier-Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the anti-phase oscillation.


Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Alexander Kuzmin

AbstractTransonic flow past a Whitcomb airfoil and two modifications of it at Reynolds numbers of the order of ten millions is studied. The numerical modeling is based on the system of Reynolds-averaged Navier-Stokes equations. The flow simulations show that variations of the lift coefficient versus the angle of attack become more abrupt with decreasing curvature of the airfoil in the midchord region. This is caused by an instability of closely spaced local supersonic regions on the upper surface of the airfoil.


1994 ◽  
Vol 116 (4) ◽  
pp. 202-208 ◽  
Author(s):  
K. Nakajima ◽  
Y. Kallinderis ◽  
I. Sibetheros ◽  
R. W. Miksad ◽  
K. Lambrakos

A numerical study of the nonlinear and random behavior of flow-induced forces on offshore structures and experimental verification of the results are presented. The numerical study is based on a finite-element method for the unsteady incompressible Navier-Stokes equations in two dimensions. The momentum equations combined with a pressure correction equation are solved employing fourth-order artificial dissipation with a nonstaggered grid, instead of the more commonly used staggered meshes. The solution is advanced in time with a combined explicit and implicit marching scheme. Emphasis is placed on study of reversing flows around a cylinder. Comparisons with experimental data evaluate accuracy and robustness of the method.


1975 ◽  
Vol 97 (1) ◽  
pp. 39-50 ◽  
Author(s):  
S. Hayashi ◽  
T. Matsui ◽  
T. Ito

The Navier-Stokes equations and the equation of continuity describing the flow in the flat-faced nozzle-flapper valve are numerically solved by the iterative relaxation method and the effect of the flow contraction (vena contracta) occurring in the radial gap in the valve is investigated. Furthermore, an approximate formula for the flow force acting on the flapper is derived on the basis of the numerical solutions. The formula for the flow force is in good agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document