Application of the method of moving planes to conformally invariant equations

2004 ◽  
Vol 247 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Pengfei Guan ◽  
Chang-Shou Lin ◽  
Guofang Wang
2018 ◽  
Vol 149 (04) ◽  
pp. 979-994 ◽  
Author(s):  
Daomin Cao ◽  
Wei Dai

AbstractIn this paper, we are concerned with the following bi-harmonic equation with Hartree type nonlinearity $$\Delta ^2u = \left( {\displaystyle{1 \over { \vert x \vert ^8}}* \vert u \vert ^2} \right)u^\gamma ,\quad x\in {\open R}^d,$$where 0 < γ ⩽ 1 and d ⩾ 9. By applying the method of moving planes, we prove that nonnegative classical solutions u to (𝒫γ) are radially symmetric about some point x0 ∈ ℝd and derive the explicit form for u in the Ḣ2 critical case γ = 1. We also prove the non-existence of nontrivial nonnegative classical solutions in the subcritical cases 0 < γ < 1. As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Linfen Cao ◽  
Xiaoshan Wang ◽  
Zhaohui Dai

In this paper, we study a nonlinear system involving the fractional p-Laplacian in a unit ball and establish the radial symmetry and monotonicity of its positive solutions. By using the direct method of moving planes, we prove the following result. For 0<s,t<1,p>0, if u and v satisfy the following nonlinear system -Δpsux=fvx;  -Δptvx=gux,  x∈B10;  ux,vx=0,  x∉B10. and f,g are nonnegative continuous functions satisfying the following: (i) f(r) and g(r) are increasing for r>0; (ii) f′(r)/rp-2, g′(r)/rp-2 are bounded near r=0. Then the positive solutions (u,v) must be radially symmetric and monotone decreasing about the origin.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Linfen Cao ◽  
Zhaohui Dai

We consider system of integral equations related to the weighted Hardy-Littlewood-Sobolev (HLS) inequality in a half space. By the Pohozaev type identity in integral form, we present a Liouville type theorem when the system is in both supercritical and subcritical cases under some integrability conditions. Ruling out these nonexistence results, we also discuss the positive solutions of the integral system in critical case. By the method of moving planes, we show that a pair of positive solutions to such system is rotationally symmetric aboutxn-axis, which is much more general than the main result of Zhuo and Li, 2011.


2015 ◽  
Vol 26 (13) ◽  
pp. 1550110 ◽  
Author(s):  
Sufang Tang ◽  
Jingbo Dou

Consider the following Dirichlet problem involving the fractional Hénon–Lane–Emden Laplacian: [Formula: see text] where [Formula: see text] and [Formula: see text] is the upper half-Euclidean space. We first show that the above equation is equivalent to the following integral equation: [Formula: see text] where [Formula: see text] is the Green function in [Formula: see text] with the same Dirichlet condition. Then we prove the nonexistence of positive solutions by using the method of moving planes in integral forms.


Sign in / Sign up

Export Citation Format

Share Document