scholarly journals The index of an Eisenstein ideal and multiplicity one

2015 ◽  
Vol 282 (3-4) ◽  
pp. 1097-1116 ◽  
Author(s):  
Hwajong Yoo
2007 ◽  
Vol 50 (3) ◽  
pp. 321-333 ◽  
Author(s):  
David E. Blair

AbstractRecently I. Castro and F.Urbano introduced the Lagrangian catenoid. Topologically, it is ℝ × Sn–1 and its induced metric is conformally flat, but not cylindrical. Their result is that if a Lagrangian minimal submanifold in ℂn is foliated by round (n – 1)-spheres, it is congruent to a Lagrangian catenoid. Here we study the question of conformally flat, minimal, Lagrangian submanifolds in ℂn. The general problem is formidable, but we first show that such a submanifold resembles a Lagrangian catenoid in that its Schouten tensor has an eigenvalue of multiplicity one. Then, restricting to the case of at most two eigenvalues, we show that the submanifold is either flat and totally geodesic or is homothetic to (a piece of) the Lagrangian catenoid.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Henriette Elvang ◽  
Marios Hadjiantonis ◽  
Callum R. T. Jones ◽  
Shruti Paranjape

2016 ◽  
Vol 161 ◽  
pp. 384-434 ◽  
Author(s):  
Mihran Papikian ◽  
Fu-Tsun Wei

2017 ◽  
Vol 153 (11) ◽  
pp. 2310-2317
Author(s):  
Sylvain Brochard

Let $A\rightarrow B$ be a morphism of Artin local rings with the same embedding dimension. We prove that any $A$-flat $B$-module is $B$-flat. This freeness criterion was conjectured by de Smit in 1997 and improves Diamond’s criterion [The Taylor–Wiles construction and multiplicity one, Invent. Math. 128 (1997), 379–391, Theorem 2.1]. We also prove that if there is a nonzero $A$-flat $B$-module, then $A\rightarrow B$ is flat and is a relative complete intersection. Then we explain how this result allows one to simplify Wiles’s proof of Fermat’s last theorem: we do not need the so-called ‘Taylor–Wiles systems’ any more.


10.37236/2574 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Zachary Gates ◽  
Brian Goldman ◽  
C. Ryan Vinroot

Given a positive integer $n$, and partitions $\lambda$ and $\mu$ of $n$, let $K_{\lambda \mu}$ denote the Kostka number, which is the number of semistandard Young tableaux of shape $\lambda$ and weight $\mu$.  Let $J(\lambda)$ denote the number of $\mu$ such that $K_{\lambda \mu} = 1$.  By applying a result of Berenshtein and Zelevinskii, we obtain a formula for $J(\lambda)$ in terms of restricted partition functions, which is recursive in the number of distinct part sizes of $\lambda$.  We use this to classify all partitions $\lambda$ such that $J(\lambda) = 1$ and all $\lambda$ such that $J(\lambda) = 2$.  We then consider signed tableaux, where a semistandard signed tableau of shape $\lambda$ has entries from the ordered set $\{0 < \bar{1} < 1 < \bar{2} < 2 < \cdots \}$, and such that $i$ and $\bar{i}$ contribute equally to the weight.  For a weight $(w_0, \mu)$ with $\mu$ a partition, the signed Kostka number $K^{\pm}_{\lambda,(w_0, \mu)}$ is defined as the number of semistandard signed tableaux of shape $\lambda$ and weight $(w_0, \mu)$, and $J^{\pm}(\lambda)$ is then defined to be the number of weights $(w_0, \mu)$ such that $K^{\pm}_{\lambda, (w_0, \mu)} = 1$.  Using different methods than in the unsigned case, we find that the only nonzero value which $J^{\pm}(\lambda)$ can take is $1$, and we find all sequences of partitions with this property.  We conclude with an application of these results on signed tableaux to the character theory of finite unitary groups.


1986 ◽  
Vol 192 (2) ◽  
pp. 265-282 ◽  
Author(s):  
Brian D. Boe ◽  
David H. Collingwood

2021 ◽  
Vol 33 (5) ◽  
pp. 1157-1167
Author(s):  
Arvind Kumar ◽  
Jaban Meher ◽  
Karam Deo Shankhadhar

Abstract We prove strong multiplicity one results for Siegel eigenforms of degree two for the symplectic group Sp 4 ⁡ ( ℤ ) {\operatorname{Sp}_{4}(\mathbb{Z})} .


Sign in / Sign up

Export Citation Format

Share Document