The radius of convergence of the p-adic sigma function

2016 ◽  
Vol 286 (1-2) ◽  
pp. 751-781
Author(s):  
Kenichi Bannai ◽  
Shinichi Kobayashi ◽  
Seidai Yasuda
1998 ◽  
Vol 18 (2) ◽  
pp. 471-486 ◽  
Author(s):  
T. B. WARD

We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.


1966 ◽  
Vol 7 (11) ◽  
pp. 1900-1902 ◽  
Author(s):  
George A. Baker ◽  
Roy Chisholm

2008 ◽  
Vol 145 (2) ◽  
pp. 443-456
Author(s):  
XAVIER BUFF ◽  
CARSTEN L. PETERSEN

AbstractAssume $f{:}\,U\subset \C\to \C$ is a holomorphic map fixing 0 with derivative λ, where 0 < |λ| ≤ 1. If λ is not a root of unity, there is a formal power series φf(z) = z + ${\cal O}$(z2) such that φf(λ z) = f(φf(z)). This power series is unique and we denote by Rconv(f) ∈ [0,+∞] its radius of convergence. We denote by Rgeom(f) the largest radius r ∈ [0, Rconv(f)] such that φf(D(0,r)) ⊂ U. In this paper, we present new elementary techniques for studying the maps f ↦ Rconv(f) and f ↦ Rgeom(f). Contrary to previous approaches, our techniques do not involve studying the arithmetical properties of rotation numbers.


2018 ◽  
Vol 07 (04) ◽  
pp. 1840001
Author(s):  
A. N. W. Hone ◽  
F. Zullo

We present some observations on the tau-function for the fourth Painlevé equation. By considering a Hirota bilinear equation of order four for this tau-function, we describe the general form of the Taylor expansion around an arbitrary movable zero. The corresponding Taylor series for the tau-functions of the first and second Painlevé equations, as well as that for the Weierstrass sigma function, arise naturally as special cases, by setting certain parameters to zero.


Sign in / Sign up

Export Citation Format

Share Document