scholarly journals Structure constants for Chern classes of Schubert cells

Author(s):  
Changjian Su
Author(s):  
Giorgio Ottaviani ◽  
Zahra Shahidi

AbstractThe first author with B. Sturmfels studied in [16] the variety of matrices with eigenvectors in a given linear subspace, called the Kalman variety. We extend that study from matrices to symmetric tensors, proving in the tensor setting the irreducibility of the Kalman variety and computing its codimension and degree. Furthermore, we consider the Kalman variety of tensors having singular t-tuples with the first component in a given linear subspace and we prove analogous results, which are new even in the case of matrices. Main techniques come from Algebraic Geometry, using Chern classes for enumerative computations.


2021 ◽  
Vol 76 (4) ◽  
pp. 299-304
Author(s):  
Fu Chen ◽  
Jian-Rong Yang ◽  
Zi-Fa Zhou

Abstract The electron paramagnetic resonance (EPR) parameters (g factor g i , and hyperfine structure constants A i , with i = x, y, z) and local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) are theoretically investigated using the high order perturbation formulas of these EPR parameters for a 3d 9 ion under orthorhombically elongated octahedra. In the calculations, contribution to these EPR parameters due to the admixture of d-orbitals in the ground state wave function of the Cu2+ ion are taken into account based on the cluster approach, and the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the studied EPR parameters with the local structures of the Cu2+ centers. Based on the calculations, the Cu–H2O bonds are found to suffer the axial elongation ratio δ of about 3 and 2.9% along the z-axis, meanwhile, the planar bond lengths may experience variation ratio τ (≈3.8 and 1%) along x- and y-axis for Cu2+ center in (NH4)2Zn(SO4)2·6H2O and Rb2Zn(SO4)2·6H2O, respectively. The theoretical results show good agreement with the observed values.


2020 ◽  
Vol 2020 (7) ◽  
Author(s):  
Yunfeng Jiang ◽  
Shota Komatsu ◽  
Edoardo Vescovi
Keyword(s):  

Three lines in the atomic spectrum of tin, λ 3262 Å, λ 3283 Å and λ 6454Å have been studied in emission under high resolution with the use of light sources containing enriched isotopic samples. Results are reported for isotope shifts in these lines for the abundant stable isotopes ( A ≽ 116). Pressure-scanned Fabry–Perot etalons provided the necessary resolution; the spectrograms for λ 6454 Å were recorded and analysed by digital techniques, and for this line hyperfine structure constants required in the interpretation of the data were also evaluated. The results for the three lines are not in good agreement with earlier work, but are shown to be self-consistent by means of a King plot. Their interpretation in terms of the nuclear charge distribution is considered in the following paper.


2016 ◽  
Vol 144 ◽  
pp. 306-325 ◽  
Author(s):  
Huilan Li ◽  
Jennifer Morse ◽  
Patrick Shields
Keyword(s):  

2013 ◽  
Vol 42 (3) ◽  
pp. 1111-1122 ◽  
Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document