scholarly journals Equivariant splitting of the Hodge–de Rham exact sequence

Author(s):  
Jędrzej Garnek

AbstractLet X be an algebraic curve with a faithful action of a finite group G over a field k. We show that if the Hodge–de Rham short exact sequence of X splits G-equivariantly then the action of G on X is weakly ramified. In particular, this generalizes the result of Köck and Tait for hyperelliptic curves. We discuss also converse statements and tie this problem to lifting coverings of curves to the ring of Witt vectors of length 2.

1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


2015 ◽  
Vol 67 (4) ◽  
pp. 848-869 ◽  
Author(s):  
Bernhard Köck ◽  
Joseph Tait

AbstractGiven a faithful action of a finite groupGon an algebraic curveXof genusgX≥ 2, we giveexplicit criteria for the induced action ofGon the Riemann–Roch spaceH0(X,OX(D)) to be faithful,whereDis aG-invariant divisor on X of degree at least 2gX− 2. This leads to a concise answer to the question of when the action ofGon the spaceH0(X,Ωx⊗m) of global holomorphic polydifferentials of order m is faithful. IfXis hyperelliptic, we provide an explicit basis of H0(X,Ωx⊗m). Finally, we giveapplications in deformation theory and in coding theory and discuss the analogous problem for theaction ofGon the first homologyH1(X,ℤ/mℤ) ifXis a Riemann surface.


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


2002 ◽  
Vol 133 (3) ◽  
pp. 411-430 ◽  
Author(s):  
F. E. A. JOHNSON

Let G be a finite group; by an algebraic 2-complex over G we mean an exact sequence of Z[G]-modules of the form:E = (0 → J → E2 → E1 → E0 → Z → 0)where Er is finitely generated free over Z[G] for 0 [les ] r [les ] 2. The module J is determined up to stability by the fact of appearing in such an exact sequence; we denote its stable class by Ω3(Z); E is said to be minimal when rkZ(J) attains the minimum possible value within Ω3(Z).


1954 ◽  
Vol 2 (2) ◽  
pp. 66-76 ◽  
Author(s):  
Iain T. Adamson

Let G be a finite group, H an arbitrary subgroup (i.e., not necessarily normal); we decompose G as a union of left cosets modulo H:choosing fixed coset representatives v. In this paper we construct a “coset space complex” and assign cohomology groups; Hr([G: H], A), to it for all coefficient modules A and all dimensions, -∞<r<∞. We show that ifis an exact sequence of coefficient modules such that H1U, A')= 0 for all subgroups U of H, then a cohomology group sequencemay be defined and is exact for -∞<r<∞. We also provide a link between the cohomology groups Hr([G: H], A) and the cohomology groups of G and H; namely, we prove that if Hv(U, A)= 0 for all subgroups U of H and for v = 1, 2, …, n–1, then the sequenceis exact, where the homomorphisms of the sequence are those induced by injection, inflation and restriction respectively.


Author(s):  
R. J. Higgs

AbstractLet G be a finite group, α be a fixed cocycle of G and Proj (G, α) denote the set of irreducible projective characters of G lying over the cocycle α.Suppose N is a normal subgroup of G. Then the author shows that there exists a G- invariant element of Proj(N, αN) of degree 1 if and only if [α] is an element of the image of the inflation homomorphism from M(G/N) into M(G), where M(G) denotes the Schur multiplier of G. However in many situations one can produce such G-invariant characters where it is not intrinsically obvious that the cocycle could be inflated. Because of this the author obtains a restatement of his original result using the Lyndon-Hochschild-Serre exact sequence of cohomology. This restatement not only resolves the apparent anomalies, but also yields as a corollary the well-known fact that the inflation-restriction sequence is exact when N is perfect.


Author(s):  
Yoav Segev ◽  
Peter Webb

AbstractWe develop techniques to compute the homology of Quillen's complex of elementary abelian p-subgroups of a finite group in the case where the group has a normal subgroup of order divisible by p. The main result is a long exact sequence relating the homologies of these complexes for the whole group, the normal subgroup, and certain centralizer subgroups. The proof takes place at the level of partially-ordered sets. Notions of suspension and wedge product are considered in this context, which are analogous to the corresponding notions for topological spaces. We conclude with a formula for the generalized Steinberg module of a group with a normal subgroup, and give some examples.


2019 ◽  
Vol 70 (4) ◽  
pp. 1437-1448
Author(s):  
David Benson ◽  
Radha Kessar ◽  
Markus Linckelmann

Abstract Let $k$ be an algebraically closed field of characteristic $p$, and let ${\mathcal{O}}$ be either $k$ or its ring of Witt vectors $W(k)$. Let $G$ be a finite group and $B$ a block of ${\mathcal{O}} G$ with normal abelian defect group and abelian $p^{\prime}$ inertial quotient $L$. We show that $B$ is isomorphic to its second Frobenius twist. This is motivated by the fact that bounding Frobenius numbers is one of the key steps towards Donovan’s conjecture. For ${\mathcal{O}}=k$, we give an explicit description of the basic algebra of $B$ as a quiver with relations. It is a quantized version of the group algebra of the semidirect product $P\rtimes L$.


Author(s):  
SONIA NATALE ◽  

Abstract We study exact sequences of finite tensor categories of the form Rep G → 𝒞 → 𝒟, where G is a finite group. We show that, under suitable assumptions, there exists a group Γ and mutual actions by permutations ⊳ : Γ × G → G and ⊲ : Γ × G→ Γ that make (G, Γ) into matched pair of groups endowed with a natural crossed action on 𝒟 such that 𝒞 is equivalent to a certain associated crossed extension 𝒟(G,Γ) of 𝒟. Dually, we show that an exact sequence of finite tensor categories Vec G → 𝒞 → 𝒟 induces an Aut(G)-grading on 𝒞 whose neutral homogeneous component is a (Z(G), Γ)-crossed extension of a tensor subcategory of 𝒟. As an application we prove that such extensions 𝒞 of 𝒟 are weakly group-theoretical fusion categories if and only if 𝒟 is a weakly group-theoretical fusion category. In particular, we conclude that every semisolvable semisimple Hopf algebra is weakly group-theoretical.


Sign in / Sign up

Export Citation Format

Share Document