scholarly journals Extensions of tensor categories by finite group fusion categories

Author(s):  
SONIA NATALE ◽  

Abstract We study exact sequences of finite tensor categories of the form Rep G → 𝒞 → 𝒟, where G is a finite group. We show that, under suitable assumptions, there exists a group Γ and mutual actions by permutations ⊳ : Γ × G → G and ⊲ : Γ × G→ Γ that make (G, Γ) into matched pair of groups endowed with a natural crossed action on 𝒟 such that 𝒞 is equivalent to a certain associated crossed extension 𝒟(G,Γ) of 𝒟. Dually, we show that an exact sequence of finite tensor categories Vec G → 𝒞 → 𝒟 induces an Aut(G)-grading on 𝒞 whose neutral homogeneous component is a (Z(G), Γ)-crossed extension of a tensor subcategory of 𝒟. As an application we prove that such extensions 𝒞 of 𝒟 are weakly group-theoretical fusion categories if and only if 𝒟 is a weakly group-theoretical fusion category. In particular, we conclude that every semisolvable semisimple Hopf algebra is weakly group-theoretical.

1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


2002 ◽  
Vol 133 (3) ◽  
pp. 411-430 ◽  
Author(s):  
F. E. A. JOHNSON

Let G be a finite group; by an algebraic 2-complex over G we mean an exact sequence of Z[G]-modules of the form:E = (0 → J → E2 → E1 → E0 → Z → 0)where Er is finitely generated free over Z[G] for 0 [les ] r [les ] 2. The module J is determined up to stability by the fact of appearing in such an exact sequence; we denote its stable class by Ω3(Z); E is said to be minimal when rkZ(J) attains the minimum possible value within Ω3(Z).


1954 ◽  
Vol 2 (2) ◽  
pp. 66-76 ◽  
Author(s):  
Iain T. Adamson

Let G be a finite group, H an arbitrary subgroup (i.e., not necessarily normal); we decompose G as a union of left cosets modulo H:choosing fixed coset representatives v. In this paper we construct a “coset space complex” and assign cohomology groups; Hr([G: H], A), to it for all coefficient modules A and all dimensions, -∞<r<∞. We show that ifis an exact sequence of coefficient modules such that H1U, A')= 0 for all subgroups U of H, then a cohomology group sequencemay be defined and is exact for -∞<r<∞. We also provide a link between the cohomology groups Hr([G: H], A) and the cohomology groups of G and H; namely, we prove that if Hv(U, A)= 0 for all subgroups U of H and for v = 1, 2, …, n–1, then the sequenceis exact, where the homomorphisms of the sequence are those induced by injection, inflation and restriction respectively.


Author(s):  
Jędrzej Garnek

AbstractLet X be an algebraic curve with a faithful action of a finite group G over a field k. We show that if the Hodge–de Rham short exact sequence of X splits G-equivariantly then the action of G on X is weakly ramified. In particular, this generalizes the result of Köck and Tait for hyperelliptic curves. We discuss also converse statements and tie this problem to lifting coverings of curves to the ring of Witt vectors of length 2.


Author(s):  
R. J. Higgs

AbstractLet G be a finite group, α be a fixed cocycle of G and Proj (G, α) denote the set of irreducible projective characters of G lying over the cocycle α.Suppose N is a normal subgroup of G. Then the author shows that there exists a G- invariant element of Proj(N, αN) of degree 1 if and only if [α] is an element of the image of the inflation homomorphism from M(G/N) into M(G), where M(G) denotes the Schur multiplier of G. However in many situations one can produce such G-invariant characters where it is not intrinsically obvious that the cocycle could be inflated. Because of this the author obtains a restatement of his original result using the Lyndon-Hochschild-Serre exact sequence of cohomology. This restatement not only resolves the apparent anomalies, but also yields as a corollary the well-known fact that the inflation-restriction sequence is exact when N is perfect.


Author(s):  
Yoav Segev ◽  
Peter Webb

AbstractWe develop techniques to compute the homology of Quillen's complex of elementary abelian p-subgroups of a finite group in the case where the group has a normal subgroup of order divisible by p. The main result is a long exact sequence relating the homologies of these complexes for the whole group, the normal subgroup, and certain centralizer subgroups. The proof takes place at the level of partially-ordered sets. Notions of suspension and wedge product are considered in this context, which are analogous to the corresponding notions for topological spaces. We conclude with a formula for the generalized Steinberg module of a group with a normal subgroup, and give some examples.


1981 ◽  
Vol 90 (2) ◽  
pp. 251-257
Author(s):  
P. J. Webb

Let G be a finite group and let g be the augmentation ideal of the integral group ring G. Following Gruenberg(5) we let (g̱) denote the category whose objects are short exact sequences of zG-modules of the form and in which the morphisms are commutative diagramsIn this paper we describe the projective objects in this category. These are the objects which satisfy the usual categorical definition of projectivity, but they may also be characterized as the short exact sequencesin which P is a projective module.


2008 ◽  
Vol 10 (supp01) ◽  
pp. 1049-1074 ◽  
Author(s):  
SEUNG-MOON HONG ◽  
ERIC ROWELL ◽  
ZHENGHAN WANG

It has been conjectured that every (2 + 1)-TQFT is a Chern-Simons-Witten (CSW) theory labeled by a pair (G, λ), where G is a compact Lie group, and λ ∈ H4(BG; ℤ) a cohomology class. We study two TQFTs constructed from Jones' subfactor theory which are believed to be counterexamples to this conjecture: one is the quantum double of the even sectors of the E6subfactor, and the other is the quantum double of the even sectors of the Haagerup subfactor. We cannot prove mathematically that the two TQFTs are indeed counterexamples because CSW TQFTs, while physically defined, are not yet mathematically constructed for every pair (G, λ). The cases that are constructed mathematically include: (1) G is a finite group — the Dijkgraaf-Witten TQFTs; (2) G is torus Tn; (3) G is a connected semi-simple Lie group — the Reshetikhin-Turaev TQFTs.We prove that the two TQFTs are not among those mathematically constructed TQFTs or their direct products. Both TQFTs are of the Turaev-Viro type: quantum doubles of spherical tensor categories. We further prove that neither TQFT is a quantum double of a braided fusion category, and give evidence that neither is an orbifold or coset of TQFTs above. Moreover, representation of the braid groups from the half E6TQFT can be used to build universal topological quantum computers, and the same is expected for the Haagerup case.


2020 ◽  
Vol 29 (05) ◽  
pp. 2050032
Author(s):  
Adam Deaton ◽  
Paul Gustafson ◽  
Leslie Mavrakis ◽  
Eric C. Rowell ◽  
Sasha Poltoratski ◽  
...  

A braided fusion category is said to have Property F if the associated braid group representations factor through a finite group. We verify integral metaplectic modular categories have property F by showing these categories are group-theoretical. For the special case of integral categories [Formula: see text] with the fusion rules of [Formula: see text] we determine the finite group [Formula: see text] for which [Formula: see text] is braided equivalent to [Formula: see text]. In addition, we determine the associated classical link invariant, an evaluation of the 2-variable Kauffman polynomial at a point.


Sign in / Sign up

Export Citation Format

Share Document