scholarly journals An improved a priori error analysis of Nitsche’s method for Robin boundary conditions

2017 ◽  
Vol 138 (4) ◽  
pp. 1011-1026 ◽  
Author(s):  
Nora Lüthen ◽  
Mika Juntunen ◽  
Rolf Stenberg
2019 ◽  
Vol 50 (3) ◽  
pp. 207-221 ◽  
Author(s):  
Sergey Buterin

The perturbation of the Sturm--Liouville differential operator on a finite interval with Robin boundary conditions by a convolution operator is considered. The inverse problem of recovering the convolution term along with one boundary condition from the spectrum is studied, provided that the Sturm--Liouville potential as well as the other boundary condition are known a priori. The uniqueness of solution for this inverse problem is established along with necessary and sufficient conditions for its solvability. The proof is constructive and gives an algorithm for solving the inverse problem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Li-Bin Liu ◽  
Ying Liang ◽  
Xiaobing Bao ◽  
Honglin Fang

AbstractA system of singularly perturbed convection-diffusion equations with Robin boundary conditions is considered on the interval $[0,1]$ [ 0 , 1 ] . It is shown that any solution of such a problem can be expressed to a system of first-order singularly perturbed initial value problem, which is discretized by the backward Euler formula on an arbitrary nonuniform mesh. An a posteriori error estimation in maximum norm is derived to design an adaptive grid generation algorithm. Besides, in order to establish the initial values of the original problems, we construct a nonlinear optimization problem, which is solved by the Nelder–Mead simplex method. Numerical results are given to demonstrate the performance of the presented method.


Sign in / Sign up

Export Citation Format

Share Document