scholarly journals A priori error analysis for a finite element approximation of dynamic viscoelasticity problems involving a fractional order integro-differential constitutive law

2021 ◽  
Vol 47 (3) ◽  
Author(s):  
Yongseok Jang ◽  
Simon Shaw
2003 ◽  
Vol 3 (4) ◽  
pp. 596-607 ◽  
Author(s):  
Igor Mozolevski ◽  
Endre Süli

AbstractWe consider the hp-version of the discontinuous Galerkin finite element approximation of boundary value problems for the biharmonic equation. Our main concern is the a priori error analysis of the method, based on a nonsymmetric bilinear form with interior discontinuity penalization terms. We establish an a priori error bound for the method which is of optimal order with respect to the mesh size h , and nearly optimal with respect to the degree p of the polynomial approximation. For analytic solutions, the method exhibits an exponential rate of convergence under p- refinement. These results are shown in the DG-norm for a general shape regular family of partitions consisting of d-dimensional parallelepipeds. The theoretical results are confirmed by numerical experiments. The method has also been tested on several practical problems of thin-plate-bending theory and has been shown to be competitive in accuracy with existing algorithms.


2018 ◽  
Vol 40 (1) ◽  
pp. 87-108
Author(s):  
Eberhard Bänsch ◽  
Markus Gahn

Abstract In this paper we introduce and analyze a mixed finite-element approach for a coupled bulk-surface problem of second order with a Wentzell boundary condition. The problem is formulated on a domain with a curved smooth boundary. We introduce a mixed formulation that is equivalent to the usual weak formulation. Furthermore, optimal a priori error estimates between the exact solution and the finite-element approximation are derived. To this end, the curved domain is approximated by a polyhedral domain introducing an additional geometrical error that has to be bounded. A computational result confirms the theoretical findings.


2013 ◽  
Vol 18 (5) ◽  
pp. 631-640 ◽  
Author(s):  
Yuelong Tang

In this paper, we consider an improved finite element approximation for temperature control problems, where the state and the adjoint state are discretized by piecewise linear functions while the control is not discretized directly. The numerical solution of the control is obtained by a projection of the adjoint state to the set of admissible controls. We derive a priori error estimates and superconvergence of second-order. Moreover, we present some numerical examples to illustrate our theoretical results.


2017 ◽  
Vol 22 (5) ◽  
pp. 643-653
Author(s):  
Fengxin Chen ◽  
Zhaojie Zhou

In this paper we investigate a semi-discrete H1 -Galerkin mixed finite element approximation of one kind of nolocal second order nonlinear hyperbolic equation, which is often used to describe vibration of an elastic string. A priori error estimates for the semi-discrete scheme are derived. A fully discrete scheme is constructed and one numerical example is given to verify the theoretical findings.


Sign in / Sign up

Export Citation Format

Share Document