Computational studies of bond dissociation energies, ionization potentials, and heat of formation for NH and NH + . Are hybrid density functional theory methods as accurate as quadratic complete basis set and Gaussian-2 ab initio methods?

1998 ◽  
Vol 99 (3) ◽  
pp. 171-174 ◽  
Author(s):  
Branko S. Jursic
2014 ◽  
Vol 513-517 ◽  
pp. 359-362
Author(s):  
Ming Xun Yan ◽  
Jin Dong Gong ◽  
Ping Shen ◽  
Chang Ying Yang

Density functional theory (DFT) calculations, based on B3LYP/6-311G (d, p) basis set, were performed to evaluate the OH bond dissociation energies (BDEs) for phloretin, compared with naringenin, in order to assess the contribution of hydroxyl groups at different position to the radical-scavenging properties. It is indicated clearly that A6 OH is determined as the weakest O-H bond, give rise to the smallest BDE, 73.98 kcal/mol. BDE of B4 OH decreases 2.5 kcal/mol in benzene, very close to that of A6OH, indicated that B4 OH group is also mainly contributed to the reaction with free radicals, especially in non-polar environments.


2008 ◽  
Vol 07 (05) ◽  
pp. 943-951 ◽  
Author(s):  
XIAO-HONG LI ◽  
ZHENG-XIN TANG ◽  
ABRAHAM F. JALBOUT ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 15 thiol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86, PBE0) methods and the complete basis set (CBS-Q) method together with 6-311G** basis set. It is demonstrated that B3P86 and CBS-Q methods are accurate for computing the reliable BDEs for thiol compounds. In order to test whether the non-local BLYP method suggested by Fu et al.19 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for seven thiol compounds are also calculated using BLYP/6-31+G* and B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is not sensitive to the basis set. Considering the inevitable computational cost of CBS-Q method and the reliability of the B3P86 calculations, B3P86 method with a moderate or a larger basis set may be more suitable to calculate the BDEs of the C–SH bond for thiol compounds.


2012 ◽  
Vol 90 (4) ◽  
pp. 333-343 ◽  
Author(s):  
Seiedeh Negar Mousavi ◽  
Davood Nori-Shargh ◽  
Hooriye Yahyaei ◽  
Kobra Mazrae Frahani

Complete basis set CBS-QB3, hybrid-density functional theory (B3LYP/Def2-TZVPP) based methods and NBO interpretation were used to investigate the impacts of the stereoelectronic effects and electrostatic and steric interactions on the conformational properties of halocarbonyl isocyanates (halo = F (1), Cl (2), and Br (3)), halothiocarbonyl isocyanates (halo = F (4), Cl (5), and Br (6)), and haloselenocarbonyl isocyanates(halo = F (7), Cl (8), and Br (9)). Both methods showed that the Z-conformations of compounds 1, 4, and 7 are more stable than their corresponding E conformations, but the stability of the E conformations, when compared with the corresponding Z conformations, increases from compound 1 to compound 3, compound 4 to compound 6, and also from compound 7 to compound 9. The NBO analysis showed that the generalized anomeric effect (GAE) is in favor of the Z conformations of compounds 1, 4, and 7. The GAE values calculated (i.e., GAEE–GAEZ) increase from compound 1 to compound 3, compound 4 to compound 6, and also from compound 7 to compound 9. On the other hand, there are none of the same trends between the calculated total dipole moment and the Gibbs free energy difference values between the E and Z conformations (i.e., ΔμE–Z and ΔGE–Z) of compounds 1–3, 4–6, and 7–9. Accordingly, the GAE succeeds in accounting for the increase of the E conformation stability from compound 1 to compound 3, compound 4 to compound 6, and also from compound 7 to compound 9. Therefore, the GAE associated with the electron delocalization, not the total dipole moment changes (i.e., ΔμE–Z), is a reasonable indicator of the total energy difference in compounds 1–3, 4–6, and 7–9. There is a direct correlation between the calculated GAE and Δ[r2–6(E) – r2–6(Z)] parameters. Importantly, there are interesting through-space electron delocalizations (LP2X6→π*C4–O5) that justify the increase of the E conformation stability from compound 1 to compound 3, compound 4 to compound 6, and also from compound 7 to compound 9, when compared with their corresponding Z conformations. The correlations between the GAE, bond orders, total steric exchange energies (TSEE), ΔGZ–E, ΔμE–Z, structural parameters, and conformational behaviors of compounds 1–9 were investigated.


Sign in / Sign up

Export Citation Format

Share Document