ab initio methods
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 59)

H-INDEX

45
(FIVE YEARS 2)

Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 63-67
Author(s):  
A. V. Baglov ◽  
L S. Khoroshko

The article represents the results of studying of the influence of atom species in the perovskite multiferroic yttrium orthoferrite YFeO3 on magnetic configurations by ab-initio methods. Four magnetic configurations possible in magnetic sublattice that were formed by iron atoms were analyzed. It is shown that different magnetic orderings change the lattice parameters and the ions occupied positions while preserving symmetry of the unit cell, the lowest state responds G-AFM type magnetic ordering. The lattice parameters are in good relevant published experimental data. The atom species energy dependence shows that the main role in magnetic properties goes to iron and oxygen. In the ground state, magnetic properties relate with Dzyaloshinskii – Moriya interaction, while in other configurations, these relate with superexchange through Fe- O-Fe chains. Obtained results are useful for analyzing and designing straintronics devices. Also, the results can be interesting for interpretation and predicting magnetic properties of partially or fully substituted orthoferrites including substitution on rare-earth elements.


2021 ◽  
Author(s):  
Hanna Oher ◽  
Geoffroy Ferru ◽  
Laurent Couston ◽  
Laurence Berthon ◽  
Dominique Guillaumont ◽  
...  

Uranyl binitrate complexes have a particular interest in the nuclear industry, especially in the reprocessing of spent nuclear fuel. The modified PUREX extraction process is designed to extract U(VI) in the form of UO2(NO3)2(L)2 as it has been confirmed by EXAFS, XRD and TRLFS measurements. In this study, the L ligands are two molecules of N,N-di-(ethyl- 2-hexyl)isobutyramide (DEHiBA) monoamide used to bind uranyl in its first coordination sphere. DEHiBA ligands can coordinate uranyl in either trans- or cis-positions with respect to the nitrate ligands and these two conformers may co-exist in solution. In order to use luminescence spectroscopy as a speciation technique, it is important to determine whether or not these conformers can be discriminated by their spectroscopic properties. To answer this question, the spectra of trans- and cis-UO2(NO3)2(DEiBA)2 conformers were modeled with ab initio methods and compared to the experimental time-resolved luminescence spectra on the UO2(NO3)2(DEHiBA)2 systems. Moreover, the hydrated uranyl binitrate UO2(NO3)2(H2O)2 complexes in the same trans and cis configurations were modeled to quantify the impact of organic DEHiBA on the luminescence properties.


2021 ◽  
Vol 18 (4) ◽  
pp. 1249
Author(s):  
Rehab M. Kubba ◽  
Mustafa mohammed Kadhim

In this work, the possibility to use new suggested carriers (D= Aspirin, Ibuprofen, Paracetamol, Tramal) is discussed for diclofenac drug (voltarine) by using quantum mechanics calculations. The calculation methods (PM3) and (DFT) have been used for determination the reaction path of (O-D) bond rupture energies. Different groups of drugs as a carrier for diclofenac prodrugs (in a vacuum) have been used; at their optimized geometries. The calculations included the geometrical structure and some of the physical properties, in addition to the toxicity, biological activity, and NLO properties of the prodrugs, investigated using HF method. The calculations were done by Gaussian 09 program. The comparison was made for total energies of reactants, activation energies, and transition states to final products. The suggested prodrugs aim to improve the diclofenac carrier's properties and obtain new alternatives for the approved carriers theoretically.


2021 ◽  
Author(s):  
Sukriti Manna ◽  
Alberto Hernandez ◽  
Yunzhe Wang ◽  
Peter Lile ◽  
Shanping Liu ◽  
...  

The chemical and structural properties of atomically precise nanoclusters are of great interest in numerous applications, but the structures of the clusters can be computationally expensive to predict. In this work, we present the largest database of cluster structures and properties determined using ab-initio methods to date. We report the methodologies used to discover low-energy clusters as well as the energies, relaxed structures, and physical properties (such as relative stability, HOMO-LUMO gap among others) for over 50,000 clusters across 55 elements. We have identified 589 structures which have energies lower than any previously reported in the literature by at least 1 meV/atom, and we have identified 1340 new structures for clusters that were previously unexplored in the literature. Patterns in the data reveal insights into the chemical and structural relationships among the elements at the nanoscale. We describe how the database can be accessed for future studies and the development of nanocluster-based technologies.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012196
Author(s):  
E V Morozova ◽  
D A Timkaeva

Abstract We study the optical and thermoelectric properties of carbon nanotubes (CNTs) with encapsulated C60 fullerene molecules. Using ab-initio methods, we calculate optical and thermoelectric paramters for CNT with fullerenes periodically located inside the nanotube at different distances from each other. Dependencies of these parameters on fullerene concentration and diameter of CNT are analyzed.


Author(s):  
Leszek M. Malec ◽  
Marlena Gryl ◽  
Marcin T. Oszajca ◽  
Mateusz Z. Brela ◽  
Katarzyna M. Stadnicka
Keyword(s):  

2021 ◽  
Vol 11 (21) ◽  
pp. 9902
Author(s):  
Elena Silaeva ◽  
Louis Saddier ◽  
Jean-Philippe Colombier

Evaluating the optical properties of matter under the action of ultrafast light is crucial in modeling laser–surface interaction and interpreting laser processing experiments. We report optimized coefficients for the Drude–Lorentz model describing the permittivity of several transition metals (Cr, W, Ti, Fe, Au, and Ni) under electron–phonon nonequilibrium, with electrons heated up to 30,000 K and the lattice staying cold at 300 K. A Basin-hopping algorithm is used to fit the Drude–Lorentz model to the nonequilibrium permittivity calculated using ab initio methods. The fitting coefficients are provided and can be easily inserted into any calculation requiring the optical response of the metals during ultrafast irradiation. Moreover, our results shed light on the electronic structure modifications and the relative contributions of intraband and interband optical transitions at high electron temperatures corresponding to the laser excitation fluence used for surface nanostructuring.


2021 ◽  
Author(s):  
Amin Alibakhshi

Accurate evaluation of combustion enthalpy is of high scientific and industrial importance. Although via ab-initio computation of heat of reactions, as one of the promising and well-established approaches in computational chemistry, this goal should in principle be achievable, examples of reliable and precise evaluation of heat of combustion by ab-initio methods has surprisingly not yet been reported. A handful of works carried out for this purpose report significant inconsistencies between the ab-initio evaluated and experimentally determined combustion enthalpies and suggest empirical corrections to improve the accuracy of predicted data. With this background, the main aims of the present study is to investigate the reasons behind those reported inconsistencies and propose guidelines for highly accurate evaluation of combustion enthalpy via ab-initio computations. Through the provided guidelines, the most accurate results ever reported, with average absolute deviation, mean unsigned error and correlation coefficient of 1.556 kJ/mole, 0.072% and 0.99999, respectively, is achieved for theoretically computed combustion enthalpies of 40 studied hydrocarbons.


2021 ◽  
Vol 75 (7) ◽  
Author(s):  
Gregory S. J. Armstrong ◽  
Margarita A. Khokhlova ◽  
Marie Labeye ◽  
Andrew S. Maxwell ◽  
Emilio Pisanty ◽  
...  

AbstractThe perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the ‘Quantum Battles in Attoscience’ cecam virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of attoscience—covering both analytical and numerical methods—and we examine common misconceptions, including the relationship between ab initio approaches and the broader numerical methods, as well as the role of numerical methods in ‘analytical’ techniques. We also evaluate the relative advantages and disadvantages of analytical as well as numerical and ab initio methods, together with their role in scientific discovery, told through the case studies of two representative attosecond processes: non-sequential double ionisation and resonant high-harmonic generation. We present the discussion in the form of a dialogue between two hypothetical theoreticians, a numericist and an analytician, who introduce and challenge the broader opinions expressed in the attoscience community.


Sign in / Sign up

Export Citation Format

Share Document