The Theory Investigation for the Antioxidant Activity of Phloretin: A Comparation with Naringenin

2014 ◽  
Vol 513-517 ◽  
pp. 359-362
Author(s):  
Ming Xun Yan ◽  
Jin Dong Gong ◽  
Ping Shen ◽  
Chang Ying Yang

Density functional theory (DFT) calculations, based on B3LYP/6-311G (d, p) basis set, were performed to evaluate the OH bond dissociation energies (BDEs) for phloretin, compared with naringenin, in order to assess the contribution of hydroxyl groups at different position to the radical-scavenging properties. It is indicated clearly that A6 OH is determined as the weakest O-H bond, give rise to the smallest BDE, 73.98 kcal/mol. BDE of B4 OH decreases 2.5 kcal/mol in benzene, very close to that of A6OH, indicated that B4 OH group is also mainly contributed to the reaction with free radicals, especially in non-polar environments.

2011 ◽  
Vol 10 (02) ◽  
pp. 179-189 ◽  
Author(s):  
XIAO-HONG LI ◽  
GENG-XIN YIN ◽  
XIAN-ZHOU ZHANG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 20 aliphatic alcohol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, and B3P86) methods with 6-311G** basis set and the complete basis set (CBS-Q) method together. It is demonstrated that B3P86 and CBS-Q methods are accurate to compute the reliable BDEs for aliphatic alcohol compounds. In order to test whether the non-local BLYP method suggested by Jursic18 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for 20 aliphatic alcohol compounds are also calculated using BLYP/6-31+G*, BLYP/6-31G*, and B3P86 methods with 6-31G*, 6-31+G*, and 6-31G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is sensitive to the basis sets. Considering the inevitably computational cost of CBS-Q method and the reliability of the B3P86 calculation, B3P86 method with 6-31G** basis set may be more suitable to calculate the BDEs of the C–O bond for aliphatic alcohol compounds.


2008 ◽  
Vol 07 (05) ◽  
pp. 943-951 ◽  
Author(s):  
XIAO-HONG LI ◽  
ZHENG-XIN TANG ◽  
ABRAHAM F. JALBOUT ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 15 thiol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86, PBE0) methods and the complete basis set (CBS-Q) method together with 6-311G** basis set. It is demonstrated that B3P86 and CBS-Q methods are accurate for computing the reliable BDEs for thiol compounds. In order to test whether the non-local BLYP method suggested by Fu et al.19 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for seven thiol compounds are also calculated using BLYP/6-31+G* and B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is not sensitive to the basis set. Considering the inevitable computational cost of CBS-Q method and the reliability of the B3P86 calculations, B3P86 method with a moderate or a larger basis set may be more suitable to calculate the BDEs of the C–SH bond for thiol compounds.


2009 ◽  
Vol 08 (03) ◽  
pp. 519-528 ◽  
Author(s):  
SONGNIAN LI ◽  
LUOXIN WANG ◽  
YONG LIU ◽  
XINLIN TUO ◽  
XIAOGONG WANG

The C – H bond dissociation energies (BDEs) of hydroxyl-terminated polybutadiene (HTPB) binder have been computed using ab initio and density functional theory methods. Five different HTPB carbon radicals were produced by the ruptures of different C – H bonds. The structural analysis of radicals and the calculated BDEs showed that the studied C – H bonds could be divided into three groups. It was found that the weakest C – H bonds were those on the tertiary carbon atom linked to a vinyl function. The next were those on the secondary carbon attached to a vinyl function. The dissociation of these two kinds of C – H bonds determines the structure of the ultimate products during the aging of HTPB binder. The most stable C – H bonds were those in the methylene that were attached to the saturated carbon atoms.


Sign in / Sign up

Export Citation Format

Share Document