scholarly journals Development, characterization, and first application of a resonant laser secondary neutral mass spectrometry setup for the research of plutonium in the context of long-term nuclear waste storage

Author(s):  
Daniela Schönenbach ◽  
Felix Berg ◽  
Markus Breckheimer ◽  
Daniel Hagenlocher ◽  
Pascal Schönberg ◽  
...  

AbstractPlutonium is a major contributor to the radiotoxicity in a long-term nuclear waste repository; therefore, many studies have focused on interactions of plutonium with the technical, geotechnical, and geological barriers of a possible nuclear waste storage site. In order to gain new insights into the sorption on surfaces and diffusion of actinides through these complex heterogeneous materials, a highly sensitive method with spatial resolution is required. Resonant laser secondary neutral mass spectrometry (Laser-SNMS) uses the spatial resolution available in time-of-flight secondary ion mass spectrometry (TOF-SIMS) in combination with the high selectivity, sensitivity, and low background noise of resonance ionization mass spectrometry (RIMS) and is, therefore, a promising method for the study and analysis of the geochemical behavior of plutonium in long-term nuclear waste storage. The authors present an approach with a combined setup consisting of a commercial TOF-SIMS instrument and a Ti:sapphire (Ti:Sa) laser system, as well as its optimization, characterization, and improvements compared to the original proof of concept by Erdmann et al. (2009). As a first application, the spatial distributions of plutonium and other elements on the surface of a pyrite particle and a cement thin section were measured by Laser-SNMS and TOF-SIMS, respectively. These results exemplify the potential of these techniques for the surface analysis of heterogeneous materials in the context of nuclear safety research.

1983 ◽  
Vol 26 ◽  
Author(s):  
L. D. Tyler ◽  
R. R. Peters ◽  
N. K. Hayden ◽  
J. K. Johnstone ◽  
S. Sinnock

ABSTRACTThe Nevada Nuclear Waste Storage Investigations (NNWSI) project includes a Performance Assessment task to evaluate the containment and isolation potential for a nuclear waste repository at Yucca Mountain in southern Nevada. This task includes calculations of the rates and concentrations at which radionuclides might be released and transported from the repository and will predict their consequences if they enter the human environment. Among the major tasks required for these calculations will be the development of models for water flow and nuclide transport under unsaturated conditions and in fractured hard rock. The program must also quantify the uncertainties associated with the results of the calculations. The performance assessment will provide evaluations needed for making major decisions as the U. S. Department of Energy seeks a site for a repository. An evaluation will be part of the environmental assessments prepared to accompany the potential nomination of the site. If the Yucca mountain site is selected for characterization and development as a repository, the assessments will be required for an environmental impact statement, a safety analysis report, and other documents.This program has been divided into five tasks. Collectively they will provide the performance assessments needed for the NNWSI Project.


Author(s):  
G. Ajeesh ◽  
Shantanu Bhowmik ◽  
Venugopal Sivakumar ◽  
Lalit Varshney ◽  
Virendra Kumar ◽  
...  

1983 ◽  
Vol 26 ◽  
Author(s):  
C. A. Morrow ◽  
D. E. Moore ◽  
J. D. Byerlee

ABSTRACTThe Topopah Spring Member of the Paintbrush Tuff from the Nevada Test Site is being investigated by the Nevada Nuclear Waste Storage Investigations project (NNWSI) as a possible nuclear waste repository host rock. Changes with time of the permeability and fluid chemistry of the Topopah Spring Member have been measured in samples subjected to a temperature gradient. Maximum temperatures of the imposed gradients ranged from 90° to 250°C; minimum temperatures were 36° to 83°C. Confining and pore pressures simulated a depth of about 1.2 km, which is greater than the proposed repository depth, but chosen for comparison with previous studies at these pressures. Pore fluid used in the experiments was groundwater from the Nevada Test Site; the direction of pore-fluid flow was from the high- to the low-temperature side of the tuffs.Initial permeabilities of the tuff samples ranged from 3 to 65 μdarcys, the wide range in values resulting from differences in the void and fracture geometries of the samples. Heating the tuffs produced no change in permeability in tne lowest temperature experiment and only small changes at higher temperatures. The fluids discharged from the tuffs were dilute waters of nearneutral pH that differed only slightly from the original groundwater composition.Since proposed burial in the Topopah Spring Member would be in the unsaturated zone, the high initial permeabilities and the absence of permeability change with heating may be desirable, because downward-percolating waters would be able to drain into deeper formations and not collect at the repository level. in addition, any fluids that may come in contact with waste canisters wlll not have acquired any potentially corrosive characteristics through interaction with the tuff.


1986 ◽  
Vol 84 ◽  
Author(s):  
Kevin G. Knauss

AbstractIn support of the Nevada Nuclear Waste Storage Investigations Project experiments were conducted to study the effects of heat generated by a nuclear waste repository in densely welded, devitrified tuff on the underlying, compositionally-equivalent glassy tuff at Yucca Mtn. Solid wafers of glassy tuff were reacted with a dilute ground water for several months at 150°C and 250°C at 100 bars pressure in Dickson-type, gold-bag rocking autoclaves. The in-situ chemistry of the hydrothermal fluids was modeled and the chemical affinities for all possible mineral precipitation reactions (contained within the extensive database) were calculated using the EQ3/6 program.In the 250°C experiment the calculations suggest that a zeolite mineral would be expected to form. Analyses of the run products showed that not only had the wafer been extensively corroded and the glass shards replaced by clinoptilolite, but pure clinoptilolite had precipitated directly from solution. In the 150°C experiment, although clay minerals were thermodynamically favored to form in the first half of the experiment, by the end of the run a zeolite mineral was predicted to form. Analyses of the run products showed no well-formed secondary minerals (clays or zeolites) had formed. At the lower temperature the effects of precipitation kinetics may preclude the formation of the zeolite within the time span of this experiment. In general the observations are in relatively good agreement with the geochemical model calculations. This type of study demonstrates the interpretive/predictive capabilities of a combined experimental/geochemical modeling approach to studies of nuclear waste isolation. This combined approach will aid in satisfying licensing requirements to assure long-term performance.


Religions ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 741
Author(s):  
Sebastian Musch

This article investigates the ethical implications of the notion of an Atomic Priesthood, an artificially constructed religion built around the preservation of knowledge related to nuclear-waste storage by using the work of Hans Jonas (1903–1993) and Günther Anders (1902–1992). Building on Jonas’ The Imperative of Responsibility from 1979 and Anders’ The Outdatedness of Human Beings from 1956, this article participates in the debate regarding the ethics of the post-closure marking of nuclear-waste storage sites. Assuming that we have a moral obligation toward future generations, as Jonas argued, even after the nuclear-waste storages have been filled and closed, there remains a need to communicate the danger of these sites to future civilizations to whom our languages and other semiotic systems are incomprehensible. Discussing the hypothetical concept of the Atomic Priesthood, an artificial religion whose central purpose would be to make it taboo to approach certain “impure” sites where our civilization had buried nuclear waste, this article argues that due to the unsolved ethical stakes, technological solutions are unequipped to deal with the long-term ramifications of nuclear power.


2021 ◽  
Author(s):  
Ronald Joseph Turner ◽  
Pieter Bots ◽  
Alan Richardson ◽  
Paul Bingham ◽  
Alex Scrimshire ◽  
...  

(Hydroxy)apatite [Ca10(PO4)6(OH)2], has emerging potential as a cement coating material, with applications in environmental remediation, nuclear waste storage and architectural preservation. In these low temperature environments and when precipitating from...


Sign in / Sign up

Export Citation Format

Share Document