Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques

Author(s):  
Daria Vilkova ◽  
Elena Kondratenko ◽  
Christine Chèné ◽  
Romdhane Karoui
Author(s):  
Maria Mikhailovna Belaya ◽  
Alexandra Andrianovna Krasilnikova

The article describes the methods of cryopreservation which provides the reliable protection of cell organelles integrity after freezing-defrosting processes, as well as the needed supply of organic substances generating metabolic process in cells and tissues after a double temperature shock, and helps to achieve a significant progress in the cell long-term storage. There are considered the aspects of low temperature preservation of sturgeon sperm. Reproductive cells of Russian sturgeon ( Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833) and sterlet ( Acipenser ruthenus Linnaeus, 1758) obtained at sturgeon hatcheries of the Astrakhan region and the research-expeditionary base “Kagalnik” in the Rostov region during spawning campaign served as the material for research. The purpose of the work was to establish optimal freezing rates during sturgeon sperm cryopreservation process that could ensure saving structural components of reproductive cells. It has been found that the freezing rate is species-specific. The best freezing speed for Russian sturgeon sperm proved to be 3°C/min. When experimenting with sterlet sperm there was registered less damage after freezing and defrosting at 10°C/min. Freezing speed 3°C/min was found less effective for sterlet sperm. Staged freezing process showed worse results in both cases. However, the quality of defrosted sperm didn’t get lower the fish breeding standards in all three studied speeds, which justifies sturgeon sperm freezing at all three rates subject to different conditions of preservation.


1977 ◽  
Vol 34 (12) ◽  
pp. 2369-2373 ◽  
Author(s):  
Doris Fraser Hiltz ◽  
D. H. North ◽  
Barbara Smith Lall ◽  
R. A. Keith

Refrozen silver hake (Merluccius bilinearis), processed as fillets and minced flesh after thawing of stored round fish that had been frozen within 14 h of capture, underwent rapid deterioration during storage at −18 °C compared with once-frozen control materials from the same lot of fish. The estimated maximum storage life of silver hake refrozen as fillets after 3 and 6 mo storage of the round fish at −25 °C was reduced to about 4.5 and 1 mo, respectively, from 10 mo for once-frozen control fillets. Quality of the refrozen materials immediately after thawing and refreezing was similar to that of the round-frozen fish, except after 6 mo, where some initial deterioration occurred, particularly in minced flesh. Minced flesh was more unstable in frozen storage than fillets. In all once- and twice-frozen materials, formation of dimethylamine occurred concomitantly with decrease in protein extractability. Round-frozen fish underwent no loss in protein extractability during 6 mo storage at −25 °C, but some lipid hydrolysis occurred. These results suggest that the freeze–thaw–refreeze process as applied to silver hake will yield a final product of acceptable quality provided that storage of the round fish does not exceed 3–4 mo and that the refrozen materials are marketed within a month after processing. Key words: silver hake, Merluccius bilinearis, refrozen storage, dimethylamine, minced flesh


2009 ◽  
Vol 58 (1) ◽  
pp. 70-85
Author(s):  
Henry Munack ◽  
Hilmar Schröder

Abstract. Ground temperature measurements have been carried out at eleven different sites of the Prokhodnaja valley in the high mountains of the Zailijskij Alatau (Northern Tian Shan, Kazakhstan) between the summers of 2003 and 2004. For this purpose the periglacial zone and adjacent altitudinal zones have been examined between 2,500 and 4,000 m asl with an equidistance of 250 m. The influences of the altitude, the exposure as well as the depth below the earth’s surface on the thermal content and condition of periglacial soils have been considered. The measurements provide useful information about the relations between quantity and quality of freeze-thaw action and the parameters mentioned above.


Author(s):  
Yang-yang Gong ◽  
Yan-qing Huang ◽  
Lu-jiao Gao ◽  
Jian-xue Lu ◽  
Hong-liang Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document