scholarly journals Nonzero Kronecker Coefficients and What They Tell us about Spectra

2007 ◽  
Vol 270 (3) ◽  
pp. 575-585 ◽  
Author(s):  
Matthias Christandl ◽  
Aram W. Harrow ◽  
Graeme Mitchison
2021 ◽  
Vol 177 ◽  
pp. 105297
Author(s):  
C. Bowman ◽  
M. De Visscher ◽  
J. Enyang

2018 ◽  
Vol 84 ◽  
pp. 113-146 ◽  
Author(s):  
V. Baldoni ◽  
M. Vergne ◽  
M. Walter

2012 ◽  
Vol 22 (03) ◽  
pp. 1250022 ◽  
Author(s):  
ADRIANO GARSIA ◽  
NOLAN WALLACH ◽  
GUOCE XIN ◽  
MIKE ZABROCKI

This work lies across three areas of investigation that are by themselves of independent interest. A problem that arose in quantum computing led us to a link that tied these areas together. This link led to the calculation of some Kronecker coefficients by computing constant terms and conversely the computations of certain constant terms by computing Kronecker coefficients by symmetric function methods. This led to results as well as methods for solving numerical problems in each of these separate areas.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Emmanuel Briand ◽  
Rosa Orellana ◽  
Mercedes Rosas

International audience We show that the Kronecker coefficients indexed by two two―row shapes are given by quadratic quasipolynomial formulas whose domains are the maximal cells of a fan. Simple calculations provide explicitly the quasipolynomial formulas and a description of the associated fan. These new formulas are obtained from analogous formulas for the corresponding reduced Kronecker coefficients and a formula recovering the Kronecker coefficients from the reduced Kronecker coefficients. As an application, we characterize all the Kronecker coefficients indexed by two two-row shapes that are equal to zero. This allowed us to disprove a conjecture of Mulmuley about the behavior of the stretching functions attached to the Kronecker coefficients. Nous démontrons que les coefficients de Kronecker indexés par deux partitions de longueur au plus 2 sont donnés par des formules quasipolynomiales quadratiques dont les domaines de validité sont les cellules maximales d'un éventail. Des calculs simples nous donnent une description explicite des formules quasipolynomiales et de l'éventail associé. Ces nouvelles formulas sont obtenues de formules analogues pour les coefficients de Kronecker réduits correspondants et au moyen d'une formule reconstruisant les coefficients de Kronecker à partir des coefficients de Kronecker réduits. Une application est la caractérisation exacte de tous les coefficients de Kronecker non―nuls indexés par deux partitions de longueur au plus deux. Ceci nous a permis de réfuter une conjecture de Mulmuley au sujet des fonctions de dilatations associées aux coefficients de Kronecker.


Sign in / Sign up

Export Citation Format

Share Document