Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials

2003 ◽  
Vol 153 (3) ◽  
pp. 366-377 ◽  
Author(s):  
Michael E. Knash ◽  
Aiko Kido ◽  
Monica Gorassini ◽  
K. Ming Chan ◽  
Richard B. Stein
2014 ◽  
Vol 92 (10) ◽  
pp. 821-825
Author(s):  
Alyssa R. Hindle ◽  
Jenny W.H. Lou ◽  
David F. Collins

The afferent volley generated by neuromuscular electrical stimulation (NMES) influences corticospinal (CS) excitability and frequent NMES sessions can strengthen CS pathways, resulting in long-term improvements in function. This afferent volley can be altered by manipulating NMES parameters. Presently, we manipulated one such parameter, pulse duration, during NMES over the common peroneal nerve and assessed the influence on H-reflexes and CS excitability. We hypothesized that compared with shorter pulse durations, longer pulses would (i) shift the H-reflex recruitment curve to the left, relative to the M-wave curve; and (ii) increase CS excitability more. Using 3 pulse durations (50, 200, 1000 μs), M-wave and H-reflex recruitment curves were collected and, in separate experiments, CS excitability was assessed by comparing motor evoked potentials elicited before and after 30 min of NMES. Despite finding a leftward shift in the H-reflex recruitment curve when using the 1000 μs pulse duration, consistent with a larger afferent volley for a given efferent volley, the increases in CS excitability were not influenced by pulse duration. Hence, although manipulating pulse duration can alter the relative recruitment of afferents and efferents in the common peroneal nerve, under the present experimental conditions it is ineffective for maximizing CS excitability for rehabilitation.


2004 ◽  
Vol 82 (8-9) ◽  
pp. 784-792 ◽  
Author(s):  
D J Weber ◽  
R B Stein ◽  
K M Chan ◽  
G E Loeb ◽  
F J.R Richmond ◽  
...  

This paper presents a case study that tested the feasibility and efficacy of using injectable microstimulators (BIONs®) in a functional electrical stimulation (FES) device to correct foot drop. Compared with surface stimulation of the common peroneal nerve, stimulation with BIONs provides more selective activation of specific muscles. For example, stimulation of the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles with BIONs produces ankle flexion without excessive inversion or eversion of the foot (i.e., balanced flexion). Efficacy was assessed using a 3-dimensional motion analysis of the ankle and foot trajectories during walking with and without stimulation. Without stimulation, the toe on the affected leg drags across the ground. BION stimulation of the TA muscle and deep peroneal nerve (which innervates TA and EDL) elevates the foot such that the toe clears the ground by 3 cm, which is equivalent to the toe clearance in the less affected leg. The physiological cost index (PCI) measured effort during walking. The PCI equals the change in heart rate (from rest to activity) divided by the walking speed; units are beats per metre. The PCI is high without stimulation (2.29 ± 0.37, mean ± SD) and greatly reduced with surface (1.29 ± 0.10) and BIONic stimulation (1.46 ± 0.24). Also, walking speed increased from 9.4 ± 0.4 m/min without stimulation to 19.6 ± 2.0 m/min with surface and 17.8 ± 0.7 m/min with BIONic stimulation. These results suggest that FES delivered by a BION is an alternative to surface stimulation and provides selective control of muscle activation.Key words: FES, BION, foot drop, stroke, spinal cord injury.


1996 ◽  
Vol 82 (3) ◽  
pp. 593-599 ◽  
Author(s):  
Masahiko Kawaguchi ◽  
Takanori Sakamoto ◽  
Hideyuki Ohnishi ◽  
Kiyoshi Shimizu ◽  
Jun Karasawa ◽  
...  

2010 ◽  
Vol 121 (7) ◽  
pp. e33
Author(s):  
Mutsumi Sugaya ◽  
Mitsuhiko Kodama ◽  
Koji Aono ◽  
Hiroshi Tanaka ◽  
Takashi Kasahara ◽  
...  

Author(s):  
Tsunenori Takatani ◽  
Yasushi Motoyama ◽  
Young-Soo Park ◽  
Taekyun Kim ◽  
Hironobu Hayashi ◽  
...  

OBJECTIVE Reportedly, tetanic stimulation prior to transcranial electrical stimulation (TES) facilitates elicitation of motor evoked potentials (MEPs) by a mechanism involving increased corticomotoneuronal excitability in response to somatosensory input. However, the posttetanic MEP following stimulation of a pure sensory nerve has never been reported. Furthermore, no previous reports have described posttetanic MEPs in pediatric patients. The aim of this study was to investigate the efficacy of posttetanic MEPs in pediatric neurosurgery patients and to compare the effects on posttetanic MEP after tetanic stimulation of the sensory branch of the pudendal nerve versus the standard median and tibial nerves, which contain a mixture of sensory and motor fibers. METHODS In 31 consecutive pediatric patients with a mean age of 6.0 ± 5.1 years who underwent lumbosacral surgery, MEPs were elicited by TES without tetanic stimulation (conventional MEPs [c-MEPs]) and following tetanic stimulation of the unilateral median and tibial nerves (mt-MEPs) and the sensory branch of the pudendal nerve (p-MEP). Compound muscle action potentials were elicited from abductor pollicis brevis (APB), gastrocnemius (Gc), tibialis anterior (TA), and adductor hallucis (AH) muscles. The success rate of monitoring each MEP and the increases in the ratios of mt-MEP and p-MEP to c-MEP were investigated. RESULTS The success rate of monitoring p-MEPs was higher than those of mt-MEPs and c-MEPs (87.5%, 72.6%, and 63.3%, respectively; p < 0.01, adjusted by Bonferroni correction). The mean increase in the ratio of p-MEP to c-MEP for all muscles was significantly higher than that of mt-MEP to c-MEP (3.64 ± 4.03 vs 1.98 ± 2.23, p < 0.01). Subanalysis of individual muscles demonstrated significant differences in the increases in the ratios between p-MEP and mt-MEP in the APB bilaterally, as well as ipsilateral Gc, contralateral TA, and bilateral AH muscles. CONCLUSIONS Tetanic stimulation prior to TES can augment the amplitude of MEPs during pediatric neurosurgery, the effect being larger with pudendal nerve stimulation than tetanic stimulation of the unilateral median and tibial nerves. TES elicitation of p-MEPs might be useful in pediatric patients in whom it is difficult to elicit c-MEPs.


Sign in / Sign up

Export Citation Format

Share Document