Neuronal activity in primary motor cortex differs when monkeys perform somatosensory and visually guided wrist movements

2005 ◽  
Vol 167 (4) ◽  
pp. 571-586 ◽  
Author(s):  
Yu Liu ◽  
John M. Denton ◽  
Randall J. Nelson
1991 ◽  
Vol 66 (3) ◽  
pp. 705-718 ◽  
Author(s):  
H. Mushiake ◽  
M. Inase ◽  
J. Tanji

1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.


2010 ◽  
Vol 68 ◽  
pp. e376
Author(s):  
Katsumi Nakajima ◽  
Futoshi Mori ◽  
Akira Murata ◽  
Masahiko Inase

2007 ◽  
Vol 98 (4) ◽  
pp. 2008-2021 ◽  
Author(s):  
Kiyoshi Kurata

The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.


2007 ◽  
Vol 58 ◽  
pp. S150
Author(s):  
Katsumi Nakajima ◽  
Futoshi Mori ◽  
Akira Murata ◽  
Masahiko Inase

1996 ◽  
Vol 76 (3) ◽  
pp. 2115-2119 ◽  
Author(s):  
K. Shima ◽  
E. Hoshi ◽  
J. Tanji

1. We studied neuronal activity in the claustrum of monkeys during performance of three different arm movements. We verified recording sites of claustral neurons by histological confirmation of microlesions. For the sake of comparison, we also recorded from the arm area of the precentral motor cortex (MI). Selection of the movements was either visually guided or determined by memorized information. 2. A striking property of claustral neurons is their nonselective relation to the three movements (push, pull, and turn a manipulandum). A vast majority (70%) of movement-related neurons exhibited increase of discharge in relation to all three movements, whereas only 16% were active in relation to one of the three movements. By contrast, about one-half of neurons in the MI were active in relation to a single movement. In both areas, the movement-related activity was similar regardless of whether the movements were selected by visual signals or by memory. 3. The study is the first to reveal involvement of claustral neurons in motor execution, and their activity property suggests that the way they are involved is different from that of MI neurons.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Lauran Cole ◽  
Sean P. Dukelow ◽  
Adrianna Giuffre ◽  
Alberto Nettel-Aguirre ◽  
Megan J. Metzler ◽  
...  

Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify complex sensorimotor functions to better understand mechanisms of motor learning. We aimed to characterize changes in sensorimotor function induced by tDCS and HD-tDCS paired motor learning in children within an interventional trial. Healthy, right-handed children (12–18 y) were randomized to anodal tDCS, HD-tDCS, or sham targeting the right primary motor cortex during left-hand Purdue pegboard test (PPT) training over five consecutive days. A KINARM robotic protocol quantifying proprioception, kinesthesia, visually guided reaching, and an object hit task was completed at baseline, posttraining, and six weeks later. Effects of the treatment group and training on changes in sensorimotor parameters were explored. Twenty-four children (median 15.5 years, 52% female) completed all measures. Compared to sham, both tDCS and HD-tDCS demonstrated enhanced motor learning with medium effect sizes. At baseline, multiple KINARM measures correlated with PPT performance. Following training, visually guided reaching in all groups was faster and required less corrective movements in the trained arm (H(2) = 9.250,p=0.010). Aspects of kinesthesia including initial direction error improved across groups with sustained effects at follow-up (H(2) = 9.000,p=0.011). No changes with training or stimulation were observed for position sense. For the object hit task, the HD-tDCS group moved more quickly with the right hand compared to sham at posttraining (χ2(2) = 6.255,p=0.044). Robotics can quantify complex sensorimotor function within neuromodulator motor learning trials in children. Correlations with PPT performance suggest that KINARM metrics can assess motor learning effects. Understanding how tDCS and HD-tDCS enhance motor learning may be improved with robotic outcomes though specific mechanisms remain to be defined. Exploring mechanisms of neuromodulation may advance therapeutic approaches in children with cerebral palsy and other disabilities.


Sign in / Sign up

Export Citation Format

Share Document