delay period
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 73)

H-INDEX

52
(FIVE YEARS 4)

Author(s):  
Anastasios E. Giannopoulos ◽  
Ioanna Zioga ◽  
Konstantinos Kontoangelos ◽  
Panos Papageorgiou ◽  
Fotini Kapsali ◽  
...  

Background: Body dysmorphic disorder (BDD) is a psychiatric disorder characterized by excessive preoccupation with imagined defects in appearance. Optical illusions induce illusory effects that distort the presented stimulus thus leading to ambiguous percepts. Using electroencephalography (EEG), we investigated whether BDD is related to differentiated perception during illusory percepts. Methods: 18 BDD patients and 18 controls were presented with 39 optical illusions together with a statement testing whether or not they perceived the illusion. After a delay period, they were prompted to answer whether the statement is right/wrong and their degree of confidence for their answer. We investigated differences of BDD on task performance and self-reported confidence and analysed the brain oscillations during decision-making using nonparametric cluster statistics. Results: Behaviorally, the BDD group exhibited reduced confidence when responding incorrectly, potentially attributed to higher levels of doubt. Electrophysiologically, the BDD group showed significantly reduced alpha power at mid-central scalp areas, suggesting impaired allocation of attention. Interestingly, the lower the alpha power of the identified cluster, the higher the BDD severity, as assessed by BDD psychometrics. Conclusions: Results evidenced that alpha power during illusory processing might serve as a quantitative EEG biomarker of BDD, potentially associated with reduced inhibition of task-irrelevant areas.


2022 ◽  
Vol 119 (2) ◽  
pp. e2113311119
Author(s):  
Stefania Sarno ◽  
Manuel Beirán ◽  
Joan Falcó-Roget ◽  
Gabriel Diaz-deLeon ◽  
Román Rossi-Pool ◽  
...  

Little is known about how dopamine (DA) neuron firing rates behave in cognitively demanding decision-making tasks. Here, we investigated midbrain DA activity in monkeys performing a discrimination task in which the animal had to use working memory (WM) to report which of two sequentially applied vibrotactile stimuli had the higher frequency. We found that perception was altered by an internal bias, likely generated by deterioration of the representation of the first frequency during the WM period. This bias greatly controlled the DA phasic response during the two stimulation periods, confirming that DA reward prediction errors reflected stimulus perception. In contrast, tonic dopamine activity during WM was not affected by the bias and did not encode the stored frequency. More interestingly, both delay-period activity and phasic responses before the second stimulus negatively correlated with reaction times of the animals after the trial start cue and thus represented motivated behavior on a trial-by-trial basis. During WM, this motivation signal underwent a ramp-like increase. At the same time, motivation positively correlated with accuracy, especially in difficult trials, probably by decreasing the effect of the bias. Overall, our results indicate that DA activity, in addition to encoding reward prediction errors, could at the same time be involved in motivation and WM. In particular, the ramping activity during the delay period suggests a possible DA role in stabilizing sustained cortical activity, hypothetically by increasing the gain communicated to prefrontal neurons in a motivation-dependent way.


2021 ◽  
pp. 1-14
Author(s):  
Aspen H. Yoo ◽  
Alfredo Bolaños ◽  
Grace E. Hallenbeck ◽  
Masih Rahmati ◽  
Thomas C. Sprague ◽  
...  

Abstract Humans allocate visual working memory (WM) resource according to behavioral relevance, resulting in more precise memories for more important items. Theoretically, items may be maintained by feature-tuned neural populations, where the relative gain of the populations encoding each item determines precision. To test this hypothesis, we compared the amplitudes of delay period activity in the different parts of retinotopic maps representing each of several WM items, predicting the amplitudes would track behavioral priority. Using fMRI, we scanned participants while they remembered the location of multiple items over a WM delay and then reported the location of one probed item using a memory-guided saccade. Importantly, items were not equally probable to be probed (0.6, 0.3, 0.1, 0.0), which was indicated with a precue. We analyzed fMRI activity in 10 visual field maps in occipital, parietal, and frontal cortex known to be important for visual WM. In early visual cortex, but not association cortex, the amplitude of BOLD activation within voxels corresponding to the retinotopic location of visual WM items increased with the priority of the item. Interestingly, these results were contrasted with a common finding that higher-level brain regions had greater delay period activity, demonstrating a dissociation between the absolute amount of activity in a brain area and the activity of different spatially selective populations within it. These results suggest that the distribution of WM resources according to priority sculpts the relative gains of neural populations that encode items, offering a neural mechanism for how prioritization impacts memory precision.


2021 ◽  
Author(s):  
Lukas Schneider ◽  
Adan-Ulises Dominguez-Vargas ◽  
Lydia Gibson ◽  
Melanie Wilke ◽  
Igor Kagan

Causal perturbation studies suggest that the primate dorsal pulvinar (dPul) plays a crucial role in target selection and saccade planning, but many of its basic visuomotor neuronal properties are unclear. While some functional aspects of dPul and interconnected frontoparietal areas - such as ipsilesional choice bias after inactivation - are similar, it is not known if dPul neurons share oculomotor response properties of cortical circuitry. In particular, the delay period and choice-related activity have not been explored. Here we investigated visuomotor timing and tuning in macaque dPul during instructed and free choice memory saccades using electrophysiological recordings. Most units (80%) showed significant visual (16%), visuomotor (29%) or motor-related (35%) responses. Visual cue responses were mainly contralaterally-tuned; motor responses showed weak contralateral bias. Saccade-related responses (enhancement and suppression) were more common (64%) than cue-driven responses (45%). Pre-saccadic enhancement was less frequent (9-15% depending on the definition), and only few units exhibited classical visuomotor patterns such as a combination of cue and continuous delay period activity up to the saccade onset, or pre-saccadic ramping. Instead, activity was often suppressed during movement planning (30%) and execution phases (19%). Interestingly, most spatially-selective neurons did not encode the upcoming decision during the delay in free choice trials. Thus, in absence of a visible goal, the dorsal pulvinar has only a limited role in the prospective motor planning, with response patterns partially complementary to its frontoparietal cortical partners. Conversely, prevalent cue and post-saccadic responses imply that the dorsal pulvinar participates in integrating spatial goals with processing across saccades.


Author(s):  
Ali M. Zain ◽  
Mohamed Abdelgadir ◽  
Nizar M. Ahmed

In the present work, the PG-7 (40mm) anti-tank hollow charge has been developed to double (tandem) hollow charge warhead by using a simulation program. The interaction of the precursor warhead with the Explosive Reactive Armor ERA was studied and the delayed time between the precursor head and the main charge was found which about 50 µs is with 350 mm penetration depth. The effect of precursor charge on the main charge was also studied and this effect was isolated in the delay period, in addition to the effect of precursor warhead jetting on the rear warhead the optimum delay time was found. This study was carried out using the ANSYS AUTODYN simulation program. And the model worked in several ways to reach these goals.


2021 ◽  
Author(s):  
Maria Chernysheva ◽  
Yaroslav Sych ◽  
Aleksejs Fomins ◽  
José Luis Alatorre Warren ◽  
Christopher Lewis ◽  
...  

ABSTRACTThe medial prefrontal cortex (mPFC) and the dorsomedial striatum (dmStr) are linked to working memory (WM) but how striatum-projecting mPFC neurons contribute to WM encoding, maintenance, or retrieval remains unclear. Here, we probed mPFC→dmStr pathway function in freely-moving mice during a T-maze alternation test of spatial WM. Fiber photometry of GCaMP6m-labeled mPFC→dmStr projection neurons revealed strongest activity during the delay period that requires WM maintenance. Demonstrating causality, optogenetic inhibition of mPFC→dmStr neurons only during the delay period impaired performance. Conversely, enhancing mPFC→dmStr pathway activity—via pharmacological suppression of HCN1 or by optogenetic activation during the delay— alleviated WM impairment induced by NMDA receptor blockade. Consistently, cellular-resolution miniscope imaging resolved preferred activation of >50% mPFC→dmStr neurons during WM maintenance. This subpopulation was distinct from neurons showing preference for encoding and retrieval. In all periods, including the delay, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012209
Author(s):  
E A Smirnova ◽  
A V Miakonkikh ◽  
A E Rogozhin ◽  
K V Rudenko

Abstract Ruthenium thin films were deposited by plasma enhanced atomic layer deposition using bis(ethylcyclopentadienyl)ruthenium(II) or Ru(EtCp)2 and oxygen plasma. The growth characteristics have been studied on a silicon substrate with different interfaces in a wide temperature range. On Si and SiO2, a nucleation delay period has been observed, which can be substantially reduced by the use of a tantalum nitride underlayer of ∼ 0.3 nm. The surface analysis shows that the substrate’s temperature strongly affects the composition of the film from ruthenium oxide at low temperatures to pure ruthenium film at higher temperatures.


2021 ◽  
Vol 11 (22) ◽  
pp. 10515
Author(s):  
Sergey Vladimirovich Gusev ◽  
Andrey Viktorovich Nikoporenko ◽  
Vyacheslav Sergeevich Zakharov ◽  
Vasily Mikhailovich Ezhov ◽  
Alexey Yurievich Varaksin ◽  
...  

The article is devoted to estimating the intensifying efficiency of methane-air ignition by adding a small amount of hydrogen and/or ethylene. It presents features of the experimental determination of the ignition delay period for fuel-air mixtures using shock installation and methods of processing empirical data. The testing of the known ignition kinetic models for methane, hydrogen, and ethylene with air was carried out. The results of test calculations were compared with those previously published, as well as original experiments. The kinetic model was chosen to provide the minimum discrepancy between the calculated and experimental data. The regularities of the effect of hydrogen and ethylene additives on the ignition dynamics of the methane-air mixture for the range of initial pressures from 1 to 8 bar at temperatures from 900 to 1100 K were obtained with the use of non-stationary numerical modeling. Methane-air mixtures with the mass fraction of additives not exceeding 10% were studied. The quantitative indicators of possible reduction in the ignition delay period of methane-air mixtures were detected.


2021 ◽  
Author(s):  
Daniela Gresch ◽  
Sage Boettcher ◽  
Anna C. Nobre ◽  
Freek van Ede

In everyday life, we often anticipate the timing of one upcoming task or event while actively engaging in another. Here, we investigated temporal expectations within such a multi-task scenario. In a visual working-memory task, we manipulated whether the onset of a working-memory probe could be predicted in time, while also embedding a simple intervening task within the delay period. We first show that working-memory performance benefitted from temporal predictability, even though an intervening task had to be completed in the interim. Moreover, temporal expectations regarding the upcoming working-memory probe additionally affected performance on the intervening task, resulting in faster responses when the memory probe was anticipated early, and slower responses when the memory probe was expected late, as compared to when it was temporally unpredictable. Because the intervening task always occurred at the same time during the memory delay, differences in performance on this intervening task are attributed to a between-task consequence of temporal expectation. Thus, we show that within multi-task settings, knowing when working-memory contents will be required for an upcoming task not only facilitates performance on the associated working-memory task, but can also influence the performance of other, intervening tasks.


2021 ◽  
Author(s):  
Finn Rabe ◽  
Sanne Kikkert ◽  
Nicole Wenderoth

It is well-established that vibrotactile stimulations elicit Blood-oxygen-level-dependent (BOLD) responses in somatotopically organized brain regions. Whether these somatotopic maps are modulated by working memory (WM) is still unknown. In our WM experiment, participants had to compare frequencies that were separated by a delay period. Vibrotactile stimuli were sequentially applied to either their right index or little finger. Using functional MRI, we investigated whether vibrotactile WM modulated neural activity in primary somatosensory (S1), an area that is known to contain individual finger representations. Our mass-univariate results revealed the well-described network of brain regions involved in WM. Interestingly, our mass-univariate results did not demonstrate S1 to be part of this network. However, when we parametrically modulated the time-binned regressors in our GLM we found that the delay activity in S1 and secondary somatosensory cortex (S2) was reflected in a U-shaped manner. Using multi-voxel pattern analysis (MVPA), an analysis technique that is more sensitive to subtle activity differences, we found finger-specific patterns of activation in the S1 hand area during the WM delay period. These results indicate that processes underlying WM modulate finger-specific representations during our discrimination task.


Sign in / Sign up

Export Citation Format

Share Document