scholarly journals The Hodge–Poincaré polynomial of the moduli spaces of stable vector bundles over an algebraic curve

2011 ◽  
Vol 137 (1-2) ◽  
pp. 19-55 ◽  
Author(s):  
Cristian González–Martínez
1996 ◽  
Vol 172 (2) ◽  
pp. 477-482 ◽  
Author(s):  
Rosa Maria Miró-Roig

2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


1998 ◽  
Vol 150 ◽  
pp. 85-94 ◽  
Author(s):  
Hoil Kim

Abstract.We show that the image of the moduli space of stable bundles on an Enriques surface by the pull back map is a Lagrangian subvariety in the moduli space of stable bundles, which is a symplectic variety, on the covering K3 surface. We also describe singularities and some other features of it.


2009 ◽  
Vol 347 (1) ◽  
pp. 201-233 ◽  
Author(s):  
Indranil Biswas ◽  
Johannes Huisman ◽  
Jacques Hurtubise

1996 ◽  
Vol 120 (2) ◽  
pp. 255-261 ◽  
Author(s):  
Ugo Bruzzo ◽  
Antony Maciocia

AbstractBy using a Fourier-Mukai transform for sheaves on K3 surfaces we show that for a wide class of K3 surfaces X the Hilbert schemes Hilbn(X) can be identified for all n ≥ 1 with moduli spaces of Gieseker stable vector bundles on X. We also introduce a new Fourier-Mukai type transform for such surfaces.


2010 ◽  
Vol 21 (04) ◽  
pp. 497-522 ◽  
Author(s):  
INDRANIL BISWAS ◽  
MAINAK PODDAR

Let X be a compact connected Riemann surface of genus at least two. Let r be a prime number and ξ → X a holomorphic line bundle such that r is not a divisor of degree ξ. Let [Formula: see text] denote the moduli space of stable vector bundles over X of rank r and determinant ξ. By Γ we will denote the group of line bundles L over X such that L⊗r is trivial. This group Γ acts on [Formula: see text] by the rule (E, L) ↦ E ⊗ L. We compute the Chen–Ruan cohomology of the corresponding orbifold.


2002 ◽  
Vol 165 ◽  
pp. 43-69 ◽  
Author(s):  
Laura Costa ◽  
Rosa M. Miro-Ŕoig

Let X be a smooth rational surface. In this paper, we prove the rationality of the moduli space MX,L(2; c1; c2) of rank two L-stable vector bundles E on X with det (E) = c1 ∈ Pic(X) and c2(E) = c2 ≫ 0.


2004 ◽  
Vol 15 (01) ◽  
pp. 13-45 ◽  
Author(s):  
ANA-MARIA CASTRAVET

Let C be a smooth projective complex curve of genus g≥2 and let M be the moduli space of rank 2, stable vector bundles on C, with fixed determinant of degree 1. For any k≥1, we find all the irreducible components of the space of rational curves on M, of degree k. In particular, we find the maximal rationally connected fibrations of these components. We prove that there is a one-to-one correspondence between moduli spaces of rational curves on M and moduli spaces of rank 2 vector bundles on ℙ1×C.


Sign in / Sign up

Export Citation Format

Share Document