scholarly journals An algebraic characterisation of ample type I groupoids

2021 ◽  
Author(s):  
Gabriel Favre ◽  
Sven Raum

AbstractWe give algebraic characterisations of the type I and CCR properties for locally compact second countable, ample Hausdorff groupoids in terms of subquotients of its Boolean inverse semigroup of compact open local bisections. It yields in turn algebraic characterisations of both properties for inverse semigroups with meets in terms of subquotients of their Booleanisation.

1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


1994 ◽  
Vol 05 (03) ◽  
pp. 349-372 ◽  
Author(s):  
ALEXANDRU NICA

We consider a version of the notion of F-inverse semigroup (studied in the algebraic theory of inverse semigroups). We point out that an action of such an inverse semigroup on a locally compact space has associated a natural groupoid construction, very similar to the one of a transformation group. We discuss examples related to Toeplitz algebras on subsemigroups of discrete groups, to Cuntz-Krieger algebras, and to crossed-products by partial automorphisms in the sense of Exel.


2015 ◽  
Vol 37 (2) ◽  
pp. 481-489 ◽  
Author(s):  
RUY EXEL ◽  
CHARLES STARLING

We say that an action of a countable discrete inverse semigroup on a locally compact Hausdorff space is amenable if its groupoid of germs is amenable in the sense of Anantharaman-Delaroche and Renault. We then show that for a given inverse semigroup ${\mathcal{S}}$, the action of ${\mathcal{S}}$ on its spectrum is amenable if and only if every action of ${\mathcal{S}}$ is amenable.


2016 ◽  
Vol 94 (3) ◽  
pp. 457-463 ◽  
Author(s):  
PETER R. JONES

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.


1978 ◽  
Vol 19 (1) ◽  
pp. 59-65 ◽  
Author(s):  
H. Mitsch

The natural order of an inverse semigroup defined by a ≤ b ⇔ a′b = a′a has turned out to be of great importance in describing the structure of it. In this paper an order-theoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, ≤) is shown to be the zero of (S, ·); the existence of a greatest element is equivalent to the fact, that (S, ·) is a semilattice; (S, ≤) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, ≤) is totally ordered, if and only if for all a, b ∈ S, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and right-distributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.


2001 ◽  
Vol 44 (3) ◽  
pp. 549-569 ◽  
Author(s):  
Benjamin Steinberg

AbstractAdapting the theory of the derived category to ordered groupoids, we prove that every ordered functor (and thus every inverse and regular semigroup homomorphism) factors as an enlargement followed by an ordered fibration. As an application, we obtain Lawson’s version of Ehresmann’s Maximum Enlargement Theorem, from which can be deduced the classical theory of idempotent-pure inverse semigroup homomorphisms and $E$-unitary inverse semigroups.AMS 2000 Mathematics subject classification: Primary 20M18; 20L05; 20M17


Author(s):  
D. B. McAlister

SynopsisThe aim of this paper is to describe the free product of a pair G, H of groups in the category of inverse semigroups. Since any inverse semigroup generated by G and H is a homomorphic image of this semigroup, this paper can be regarded as asking how large a subcategory, of the category of inverse semigroups, is the category of groups? In this light, we show that every countable inverse semigroup is a homomorphic image of an inverse subsemigroup of the free product of two copies of the infinite cyclic group. A similar result can be obtained for arbitrary cardinalities. Hence, the category of inverse semigroups is generated, using algebraic constructions by the subcategory of groups.The main part of the paper is concerned with obtaining the structure of the free product G inv H, of two groups G, H in the category of inverse semigroups. It is shown in section 1 that G inv H is E-unitary; thus G inv H can be described in terms of its maximum group homomorphic image G gp H, the free product of G and H in the category of groups, and its semilattice of idempotents. The second section considers some properties of the semilattice of idempotents while the third applies these to obtain a representation of G inv H which is faithful except when one group is a non-trivial finite group and the other is trivial. This representation is used in section 4 to give a structure theorem for G inv H. In this section, too, the result described in the first paragraph is proved. The last section, section 5, consists of examples.


Sign in / Sign up

Export Citation Format

Share Document