scholarly journals Inverse semigroup cohomology and crossed module extensions of semilattices of groups by inverse semigroups

Author(s):  
Mikhailo Dokuchaev ◽  
Mykola Khrypchenko ◽  
Mayumi Makuta
2016 ◽  
Vol 94 (3) ◽  
pp. 457-463 ◽  
Author(s):  
PETER R. JONES

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.


1978 ◽  
Vol 19 (1) ◽  
pp. 59-65 ◽  
Author(s):  
H. Mitsch

The natural order of an inverse semigroup defined by a ≤ b ⇔ a′b = a′a has turned out to be of great importance in describing the structure of it. In this paper an order-theoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, ≤) is shown to be the zero of (S, ·); the existence of a greatest element is equivalent to the fact, that (S, ·) is a semilattice; (S, ≤) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, ≤) is totally ordered, if and only if for all a, b ∈ S, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and right-distributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.


2001 ◽  
Vol 44 (3) ◽  
pp. 549-569 ◽  
Author(s):  
Benjamin Steinberg

AbstractAdapting the theory of the derived category to ordered groupoids, we prove that every ordered functor (and thus every inverse and regular semigroup homomorphism) factors as an enlargement followed by an ordered fibration. As an application, we obtain Lawson’s version of Ehresmann’s Maximum Enlargement Theorem, from which can be deduced the classical theory of idempotent-pure inverse semigroup homomorphisms and $E$-unitary inverse semigroups.AMS 2000 Mathematics subject classification: Primary 20M18; 20L05; 20M17


1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


Author(s):  
D. B. McAlister

SynopsisThe aim of this paper is to describe the free product of a pair G, H of groups in the category of inverse semigroups. Since any inverse semigroup generated by G and H is a homomorphic image of this semigroup, this paper can be regarded as asking how large a subcategory, of the category of inverse semigroups, is the category of groups? In this light, we show that every countable inverse semigroup is a homomorphic image of an inverse subsemigroup of the free product of two copies of the infinite cyclic group. A similar result can be obtained for arbitrary cardinalities. Hence, the category of inverse semigroups is generated, using algebraic constructions by the subcategory of groups.The main part of the paper is concerned with obtaining the structure of the free product G inv H, of two groups G, H in the category of inverse semigroups. It is shown in section 1 that G inv H is E-unitary; thus G inv H can be described in terms of its maximum group homomorphic image G gp H, the free product of G and H in the category of groups, and its semilattice of idempotents. The second section considers some properties of the semilattice of idempotents while the third applies these to obtain a representation of G inv H which is faithful except when one group is a non-trivial finite group and the other is trivial. This representation is used in section 4 to give a structure theorem for G inv H. In this section, too, the result described in the first paragraph is proved. The last section, section 5, consists of examples.


1996 ◽  
Vol 06 (05) ◽  
pp. 541-551
Author(s):  
TERUO IMAOKA ◽  
ISAMU INATA ◽  
HIROAKI YOKOYAMA

The first author obtained a generalization of Preston-Vagner Representation Theorem for generalized inverse *-semigroups. In this paper, we shall generalize their results for locally inverse *-semigroups. Firstly, by introducing a concept of a π-set (which is slightly different from the one in [7]), we shall construct the π-symmetric locally inverse *-semigroup on a π-set, and show that any locally inverse *-semigroup can be embedded up to *-isomorphism in the π-symmetric locally inverse semigroup on a π-set. Moreover, we shall obtain that the wreath product of locally inverse *-semigroups is also a locally inverse *-semigroup.


1981 ◽  
Vol 22 (2) ◽  
pp. 159-165 ◽  
Author(s):  
P. R. Jones

The structure of semigroups whose subsemigroups form a chain under inclusion was determined by Tamura [9]. If we consider the analogous problem for inverse semigroups it is immediate that (since idempotents are singleton inverse subsemigroups) any inverse semigroup whose inverse subsemigroups form a chain is a group. We will therefore, continuing the approach of [5, 6], consider inverse semigroups whose full inverse subsemigroups form a chain: we call these inverse ▽-semigroups.


Author(s):  
Karl Auinger

It is shown that the free product of two residually finite combinatorial strict inverse semigroups in general is not residually finite. In contrast, the free product of a residually finite combinatorial strict inverse semigroup and a semilattice is residually finite.


Author(s):  
S. Madhavan

AbstractIn a recent paper of the author the well-known Vagner-Preston Theorem on inverse semigroups was generalized to include a wider class of semigroups, namely right normal right inverse semigroups. In an attempt to generalize the theorem to include all right inverse semigroups, the notion of μ – μi transformations is introduced in the present paper. It is possible to construct a right inverse band BM(X) of μ – μi transformations. From this a set AM(X) for which left and right units are in BM(X) and satisfying certain conditions is constructed. The semigroup AM(X) so constructed is a right inverse semigroup. Conversely every right inverse semigroup can be isomorphically embedded in a right inverse semigroup constructed in this way.1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 20.


Author(s):  
G. B. Preston

AbstractWe give a survey of some of the realisations that have been given of monogenic inverse semigroups and discuss their relation to one another. We then analyse the representations by bijections, combined under composition, of monogenic inverse semigroups, and classify these into isomorphism types. This provides a particularly easy way of classifying monogenic inverse semigroups into isomorphism types. Of interest is that we find two quite distinct representations by bijections of free monogenic inverse semigroups and show that all such representations must contain one of these two representations. We call a bijection of the form ai ↦ ai+1, i = 1,2,…, r − 1, a finite link of length r, and one of the form ai ↦ ai+1, i = 1,2…, a forward link. The inverse of a forward link we call a backward link. Two bijections u: A → B and r: C → D are said to be strongly disjoint if A ∩ C, A ∩ D, B ∩ C and B ∩ D are each empty. The two distinct representations of a free monogenic inverse semigroup, that we have just referred to, are first, such that its generator is the union of a counbtable set os finite links that are pairwise storongly disjoint part of any representation of a free monogenic inverse semigroup, the remaining part not affecting the isomorphism type. Each representation of a monogenic inverse semigroup that is not free contains a strongly disjoint part, determining it to within isomorphism, that is generated by either the strongly disjoint union of a finite link and a permutation or the strongly disjoint union of a finite and a forward link.


Sign in / Sign up

Export Citation Format

Share Document