Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping

2017 ◽  
Vol 59 (9) ◽  
pp. 845-852 ◽  
Author(s):  
Vincent Dunet ◽  
Martine Bernasconi ◽  
Steven David Hajdu ◽  
Reto Antoine Meuli ◽  
Roy Thomas Daniel ◽  
...  
2017 ◽  
Vol 59 (7) ◽  
pp. 649-654 ◽  
Author(s):  
Georg Bier ◽  
Malte Niklas Bongers ◽  
Johann-Martin Hempel ◽  
Anja Örgel ◽  
Till-Karsten Hauser ◽  
...  

2018 ◽  
Vol 24 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Yukiko Enomoto ◽  
Keita Yamauchi ◽  
Takahiko Asano ◽  
Katharina Otani ◽  
Toru Iwama

Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p < 0.001). Additional clinical findings were seen on CBCT images of 70.4% of patients after MAR correction. Conclusion MAR software improved image quality of CBCT images degraded by metal artifacts.


2018 ◽  
Vol 13 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Peng Zhou ◽  
Chunling Zhang ◽  
Zhen Gao ◽  
Wangshu Cai ◽  
Deyue Yan ◽  
...  

AbstractObjectiveTo evaluate the practical effectiveness of smart metal artifact reduction (SMAR) in reducing artifacts caused by metallic implants.MethodsPatients with metal implants underwent computed tomography (CT) examinations on high definition CT scanner, and the data were reconstructed with adaptive statistical iterative reconstruction (ASiR) with value weighted to 40% and smart metal artifact reduction (SMAR) technology. The comparison was assessed by both subjective and objective assessment between the two groups of images. In terms of subjective assessment, three radiologists evaluated image quality and assigned a score for visualization of anatomic structures in the critical areas of interest. Objectively, the absolute CT value of the difference (ΔCT) and artifacts index (AI) were adopted in this study for the quantitative assessment of metal artifacts.ResultsIn subjective image quality assessment, three radiologists scored SMAR images higher than 40% ASiR images (P<0.01) and the result suggested that visualization of critical anatomic structures around the region of the metal object was significantly improved by using SMAR compared with 40% ASiR. The ΔCT and AI for quantitative assessment of metal artifacts showed that SMAR appeared to be superior for reducing metal artifacts (P<0.05) and indicated that this technical approach was more effective in improving the quality of CT images.ConclusionA variety of hardware (dental filling, embolization coil, instrumented spine, hip implant, knee implant) are processed with the SMAR algorithm to demonstrate good recovery of soft tissue around the metal. This artifact reduction allows for the clearer visualization of structures hidden underneath.


2017 ◽  
Vol 59 (7) ◽  
pp. 853-860 ◽  
Author(s):  
Dong Yue ◽  
Cheng Fan Rong ◽  
Cai Ning ◽  
Hu Liang ◽  
Liu Ai Lian ◽  
...  

Background The evaluation of hip arthroplasty is a challenge in computed tomography (CT). The virtual monochromatic spectral (VMS) images with metal artifact reduction software (MARs) in spectral CT can reduce the artifacts and improve the image quality. Purpose To evaluate the effects of VMS images and MARs for metal artifact reduction in patients with unilateral hip arthroplasty. Material and Methods Thirty-five patients underwent dual-energy CT. Four sets of VMS images without MARs and four sets of VMS images with MARs were obtained. Artifact index (AI), CT number, and SD value were assessed at the periprosthetic region and the pelvic organs. The scores of two observers for different images and the inter-observer agreement were evaluated. Results The AIs in 120 and 140 keV images were significantly lower than those in 80 and 100 keV images. The AIs of the periprosthetic region in VMS images with MARs were significantly lower than those in VMS images without MARs, while the AIs of pelvic organs were not significantly different. VMS images with MARs improved the accuracy of CT numbers for the periprosthetic region. The inter-observer agreements were good for all the images. VMS images with MARs at 120 and 140 keV had higher subjective scores and could improve the image quality, leading to reliable diagnosis of prosthesis-related problems. Conclusion VMS images with MARs at 120 and 140 keV could significantly reduce the artifacts from hip arthroplasty and improve the image quality at the periprosthetic region but had no obvious advantage for pelvic organs.


2017 ◽  
Vol 58 (11) ◽  
pp. 1312-1319 ◽  
Author(s):  
Jihoon Cha ◽  
Hyung-Jin Kim ◽  
Sung Tae Kim ◽  
Yi Kyung Kim ◽  
Ha Youn Kim ◽  
...  

Background Metallic dental prostheses may degrade image quality on head and neck computed tomography (CT). However, there is little information available on the use of dual-energy CT (DECT) and metal artifact reduction software (MARS) in the head and neck regions to reduce metallic dental artifacts. Purpose To assess the usefulness of DECT with virtual monochromatic imaging and MARS to reduce metallic dental artifacts. Material and Methods DECT was performed using fast kilovoltage (kV)-switching between 80-kV and 140-kV in 20 patients with metallic dental prostheses. CT data were reconstructed with and without MARS, and with synthesized monochromatic energy in the range of 40–140-kiloelectron volt (keV). For quantitative analysis, the artifact index of the tongue, buccal, and parotid areas was calculated for each scan. For qualitative analysis, two radiologists evaluated 70-keV and 100-keV images with and without MARS for tongue, buccal, parotid areas, and metallic denture. The locations and characteristics of the MARS-related artifacts, if any, were also recorded. Results DECT with MARS markedly reduced metallic dental artifacts and improved image quality in the buccal area ( P < 0.001) and the tongue ( P < 0.001), but not in the parotid area. The margin and internal architecture of the metallic dentures were more clearly delineated with MARS ( P < 0.001) and in the higher-energy images than in the lower-energy images ( P = 0.042). MARS-related artifacts most commonly occurred in the deep center of the neck. Conclusion DECT with MARS can reduce metallic dental artifacts and improve delineation of the metallic prosthesis and periprosthetic region.


Sign in / Sign up

Export Citation Format

Share Document