scholarly journals Large Deviation Principle for McKean–Vlasov Quasilinear Stochastic Evolution Equations

Author(s):  
Wei Hong ◽  
Shihu Li ◽  
Wei Liu
Author(s):  
Hassan Dadashi

We demonstrate the large deviation principle in the small noise limit for the mild solution of semilinear stochastic evolution equations with monotone nonlinearity and multiplicative Poisson noise. A recently developed method in studying the large deviation principle, weak convergent method, is employed. We apply the result obtained by Budhiraja et al.,7 that reveals the variational representation of exponential integrals w.r.t. the Poisson random measure. Our framework covers a wide range of parabolic, hyperbolic and functional differential equations. We give some examples to illustrate the applications of our results.


1981 ◽  
Vol 84 ◽  
pp. 195-208 ◽  
Author(s):  
B. L. Rozovskii ◽  
A. Shimizu

In this paper, we shall discuss the smoothness of solutions of stochastic evolution equations, which has been investigated in N. V. Krylov and B. L. Rozovskii [2] [3], to establish the existence of a filtering transition density.


Author(s):  
Andrei Khrennikov ◽  
Achref Majid

In this paper, we prove a large deviation principle for the background field in prequantum statistical field model. We show a number of examples by choosing a specific random field in our model.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Jing Cui ◽  
Litan Yan

We consider a class of nonautonomous stochastic evolution equations in real separable Hilbert spaces. We establish a new composition theorem for square-mean almost automorphic functions under non-Lipschitz conditions. We apply this new composition theorem as well as intermediate space techniques, Krasnoselskii fixed point theorem, and Banach fixed point theorem to investigate the existence of square-mean almost automorphic mild solutions. Some known results are generalized and improved.


Sign in / Sign up

Export Citation Format

Share Document